

Introduction

This document is a compilation of all 3 parts of the original series written for the
website www.GameDev.net . For ease of reading/use I’ve now compiled them into a
single pdf document.

The article text remains the same as that originally posted, but with a few slight
changes for known errata and some tidying up so they fit together better in one long
document.

All content was written by myself, Jack Hoxley, and you can email me at
Jack.Hoxley@DirectX4VB.com or visit my website at www.DirectX4VB.com

A constantly updating, a far more detailed set of tutorials is available at my website
www.DirectX4VB.com (go to DirectX8->DirectXGraphics). This article is intended as
an all-in-one guide to getting started, it is by no-means a complete guide to using
Direct3D8.

Enjoy!

 1

mailto:Jack.Hoxley@DirectX4VB.com
http://www.directx4vb.com/
http://www.directx4vb.com/

Table Of Contents:
Part 1 3
 Getting Started 4
 A Simple Application 5
 The Main Loop 10
 Render () 12
 Drawing Something – The Theory 13
 Drawing Something - The Practical Part 16
 Overview 20

Part 2 21
 Reconfiguring Our Direct3D Application 22
 Getting Started With Basic 3D Geometry 29
 Matrices And Transformations 33
 Vertex Buffers And Index Buffers 40
 Summary 48

Part 3 49
 Using Textures In Direct3D 50
 Loading 3D Models in to Direct3D 57
 Using Direct3D Lighting 61
 Conclusion 69

Recommended Reading and Links 70
Disclaimer and Copyright 71

 2

Welcome to the first of a 3 part mini-series on the usage of DirectXGraphics (The
graphical component of DirectX8), over these 3 articles I will cover everything that
you need to know to be a competent programmer in this area. Whilst this series will
not cover absolutely every aspect (that would require many more than 3 parts), by
the end you will be able to do most things, and anything you cant do you should be
able to work out for yourself, or read other tutorials and easily understand them.

Some people may well say that you cant write a proper 3D game in visual basic, I’m
not here to argue about that, but I will tell you now – it is perfectly possible to write
a moderate to advanced game in full 3D using pure visual basic, maybe not the next
quake/half-life, but that doesn’t mean you cant do any games.

In order to program with DirectX you are going to need a few things:

1. A general knowledge of the visual basic language, whilst complicated things
will be explained I will assume that you can write a reasonably complex
program.

2. A copy of Visual Basic 5 or later, earlier versions of visual basic do not
support the Component Object Model (COM), and therefore will not be able to
use DirectX8. The source code presented here is from VB6 – there may be a
few compatibility issues with VB5, but these should be fixed fairly easily.

3. A copy of DirectX8, the runtimes are perfectly acceptable (the ones that you
get from the Microsoft site or magazine CD’s). If you’re serious about learning
and using DirectX getting the SDK (Software Development Kit) will be a huge
advantage.

Whilst these articles are going to be in visual basic, the actual DirectX8 interfaces are
almost identical to those used in C/C++ (except for the obvious language
differences), so if you can use DirectX8 in C/C++ then you’ll find this very easy…

 3

Getting Started

DirectXGraphics all come under the name of Direct3D, which will be the term used
from now on (it’s shorter), but the names are interchangeable. Direct3D when it gets
hard gets very, very hard indeed; but luckily the basics are very simple, and a basic
application can be set up in a 100 or so lines of code. So here goes:

First we need to attach DirectX8 to our VB program – so it knows how to use it; open
up VB and create a new “Standard EXE” project. A single form should be added to
the project view. Go to the Project menu, then click on references to display the
library dialog. You should see a long list of objects and libraries that in the middle of
the window – all of them with a small checkbox to the left. Scroll down until you see
an entry called “DirectX 8 for Visual Basic Type Library”, select the check box and
click “Ok”.

We have now referenced our project to the DirectX 8 runtime library; that is all we
need to do in order to use DirectX 8 features in visual basic. Bare in mind that the
end user will have to have DirectX 8 installed on their computer for your application
to even begin execution – if it’s not there your program will terminate as soon as it’s
started. I have a template set up for this type of application, so it appears in my
“New Project” dialog box – something you may wish to do.

 4

A simple application

Now that we can use DirectX8 we’re going to set up a very simple example – all it
will do is create an instance of Direct3D and clear the screen, then terminate.

The first thing we need to do is put some variables into our (Declarations) section of
the form:

Dim Dx As DirectX8 'The master Object, everything comes from here
Dim D3D As Direct3D8 'This controls all things 3D
Dim D3DDevice As Direct3DDevice8 'This actually represents the hardware doing the rendering
Dim bRunning As Boolean 'Controls whether the program is running or not...

The first 3 variables here (Dx, D3D, D3Ddevice) are all classes – we’ll need to
initialise them and terminate them; the fourth variable, bRunning, is just a simple
Yes/No flag that states if the application is running or not – more on that one later.

Now seems like a good time to explain what these different objects do. DirectX8 has
a hierarchy of objects and interfaces, each one with a parent, and in this case a
“DirectX8” object is as far back as they go. The “Direct3D8” object deals with
creating devices and enumerating their capabilities. Finally the “Direct3DDevice8”
object, this represents your 3D card – you tell it to do things and (within reason) it’ll
do it. We therefore create a “DirectX8” object, this then helps us create a
“Direct3D8” object, which in turn will setup a “Direct3DDevice8” object for us to use.

There are several other interfaces/objects that we can create, but right now we don’t
really need to know much about them – you’ll see them as we go. It is very useful to
have a copy of the DirectX8 SDK help file when dealing with these objects, whilst
VB’s intellisense and object browser are very useful, the SDK help file explains and
lists all the functions and features of each interface/object.

Now that we have the variables defined we can start to do something with them; for
this we’re going to create a function called “Initialise()” which does exactly what it
says it will – when it’s finished execution (and assuming no errors) we’ll be able to
use all the objects and start making things appear on screen.

Public Function Initialise() As Boolean
On Error GoTo ErrHandler:

 Initialise = True '//We succeeded
 Exit Function

ErrHandler:
 Debug.Print "Error Number Returned: " & Err.Number, Err.Description
 Initialise = False
End Function

Above is the basic framework for the function – and you’ll be seeing that most of the
functions are designed like this. Technically Initialise() does not need to be a function
as it doesn’t return any particular data. But I particularly like this layout because it
allows me to design a good function that should never bring down the rest of the

 5

application – if it fails all it will do is return false to whoever called it. When calling
this function we should use code like this:

If Not (Initialise() = True) Then GoTo Error_Handler:

Which will execute the initialisation code, then if it succeeds it will carry on as
normal, but if it fails it will go to the “Error_Handler” for processing / correction. The
above call is just a simplified (and easier to read) version of:

If Initialise() = False Then
 GoTo Error_Handler:
End If

Now that we’ve got the basic function structure laid out we’ll put something in it. The
first thing we need to do is define two structures and initialise the Direct3D objects:

Dim DispMode As D3DDISPLAYMODE '//Describes our Display Mode
Dim D3DWindow As D3DPRESENT_PARAMETERS '//Describes our Viewport

Set Dx = New DirectX8 '//Create our Master Object
Set D3D = Dx.Direct3DCreate() '//Let our Master Object create the Direct3D Interface

The two structures are used in a minute to help create the final Direct3DDevice8
object, but right now all we do is define them. Next we create the DirectX8 object –
you may well know that it would have been perfectly legal to have defined the object
like “Dim Dx as New DirectX8”, but this is bad for what we want to do. The method
just mentioned is known as Early Binding, the method we’re using is called Late
Binding; the difference being that if you late bind it visual basic will not check if it’s
created when you try and use it (but will return errors), if you early bind it VB will
compile the code with a statement around EVERY call to the object along the lines of
“If the object is nothing, create it”. Whilst that may well only be true the first time
around, it’s still something extra for the computer to think about, and being a game
we want all the speed we can get, and these objects will be used 1000’s of times a
second – so you can imagine the sort of speed we’ll be wasting. Secondly we make
our master interface create the generic Direct3D interface. You will always be able to
create a Direct3D interface – no matter what the hardware installed can do. Now we
need to fill out the two structures we just defined:

D3D.GetAdapterDisplayMode D3DADAPTER_DEFAULT, DispMode '//Retrieve the current display Mode

D3DWindow.Windowed = 1 '//Tell it we're using Windowed Mode
D3DWindow.SwapEffect = D3DSWAPEFFECT_COPY_VSYNC '//We'll refresh when the monitor does
D3DWindow.BackBufferFormat = DispMode.Format '//We'll use the format we just retrieved...

Not too complicated really – but it gets more complicated if we want to use fullscreen
rendering (covered later on). Whilst it really wont matter for this sample, if you are
using windowed mode it’s a good idea to keep your window fairly small – 400x300 in

 6

pixels is a good size for most resolutions. The next part actually involves creating an
instance of a Direct3D device – this part can be slightly dangerous – if you send
parameters that the end-users computer cant handle then it’ll fail and cause an
error. This mostly tends to happen when you’re using fullscreen modes and you need
to choose a resolution/colour depth that suits their hardware/monitor.

Set D3DDevice = D3D.CreateDevice(D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL, _
 frmMain.hWnd, _
 D3DCREATE_SOFTWARE_VERTEXPROCESSING, _
 D3DWindow)

The actual code isn’t too complicated, but it’s what goes in the parameters that is.
The parameters are as follows:
Adapter As Long : Whilst they don’t seem to be making 3D cards with
primary/secondary devices this is where you can change it. Almost all graphics cards
will be on the default adapter (D3DADAPTER_DEFAULT). Set it to 0 or 1 otherwise
DeviceType As Const_D3DDEVTYPE : What type of device we want to use; there
are 2 main types of device and an optional 3rd:
D3DDEVTYPE_HAL - Hardware acceleration, where the actual 3D card does the
rendering
D3DDEVTYPE_REF - A reference device, purely for developers – you’ll be lucky if
you get more than 0.25 frames a second out of this. On the other hand you can do
absolutely anything with it – full feature support.
D3DDEVTYPE_SW - This cant be used unless you register a software renderer (a
plugin for DirectX), but there aren’t any bundled with Direct3D, so you’ll have to
make your own (very hard) or get a 3rd party one.
hFocusWindow As Long : This lets Direct3D know which window it needs to render
to, mostly for windowed mode, so it can check if it’s gone behind other windows or
it’s been closed and so on… always pass <FormName>.hWnd here, but make sure
that the window is visible first.
BehaviousFlags As Long : How this device will behave, and what does what
(processor and/or 3D card). This should be
D3DCREATE_SOFTWARE_VERTEXPROCESSING on most computers – or computers
where there is no hardware transform and lighting or better (almost every card
except the GeForce cards); in which case you can put in
D3DCREATE_HARDWARE_VERTEXPROCESSING, which will force the 3D card to do
transform and lighting operations; alternatively you can use the
D3DCREATE_PUREDEVICE option – which is new to Direct3D8, and is only available
on the £300+ GeForce2 Ultra chipsets (at time of writing anyway).
PresentationParameters As D3DPRESENT_PARAMETERS : Just place the
structure that we filled earlier in here…

That’s our initialisation code complete – assuming that code runs through
successfully then we’ll have a fully initialised device attached to our form ready to
play with. One word about DirectX errors – they always have the description
“Automation Error” and a number in the negative 2 millions (-2001230 for example).
Should you want to know what that means in english you’ll need to check the
Err.Number against a set of constants that the DirectX8 library provides us with. If
you have the SDK you can check what error numbers each function might return and
only check those, otherwise you’ll need to check them all – and there are a lot of
them! Look for them in the object browser, they all tend to begin with “D3DERR_” or
“E_”…

 7

One final thing that I want to cover before we move on further is the topic of
enumeration; you may not have heard of this before – but it’s something you’ll
become familiar with if you spend any length of time programming in DirectX.
Enumeration is the process of analysing the hardware to see what it’s capable of (or
not capable of). You’ll meet most of it as we go along – but there are a couple that
are relevant to device creation that I need to cover here.

In the above initialisation code we specified D3DDEVTYPE_HAL, which may or may
not be available on the host computer, and if we want to jump to fullscreen mode
we’ll need to know what resolutions and colour depths the hardware supports as
well. Whilst software vertex processing works on all computers it would be nice to
take advantage of any additional hardware features available. To do this we use the
following code:

Dim DevCaps As D3DCAPS8
On Local Error Resume Next
 D3D.GetDeviceCaps D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL, DevCaps
If Err.Number = D3DERR_INVALIDDEVICE Then
 'We couldn't get data from the hardware device - probably doesn't exist...
 D3D.GetDeviceCaps D3DADAPTER_DEFAULT, D3DDEVTYPE_REF, DevCaps
 Err.Clear '//Remove the error value..
End If

'//For Hardware vertex processing:
If (DevCaps.DevCaps And D3DDEVCAPS_HWTRANSFORMANDLIGHT) Then
 Debug.Print "Hardware Transform and lighting supported"
Else
 Debug.Print "Hardware Transform and lighting is not supported"
End If

'//For Pure Device processing:
If (DevCaps.DevCaps And D3DDEVCAPS_PUREDEVICE) Then
 Debug.Print "Pure Device is supported."
Else
 Debug.Print "Pure device is not supported"
End If

'//To check the rest we use:
If D3D.CheckDeviceType(D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL, _
 DispMode.Format, DispMode.Format, 1) = D3D_OK Then
 Debug.Print "The selected device format is acceptable"
Else
 Debug.Print "The selected device format is not acceptable"
End If

At the moment the above code does nothing more than tell you, the developer, what
the hardware can do – or can’t do. The first two lines retrieve all the enumeration
data for the device we’ve specified; there’s a simple error handler in here that should
stop us crashing if there is no hardware device present – if this is the case then the
program gets data from the reference device (which will support almost everything).
The D3DCAPS8 structure now holds all the information that we need to evaluate the
device and it’s capabilities. If you know that your application requires other features
you can enumerate them now and find out if there’s any point in using this device.

So we now have our structure filled with data, all we need to do now is extract the
information we want. At this point it’s a good idea to use the SDK help file – there

 8

are literally thousands of different flags and features we can check for, and the help
file lists every one of them with a small description (which isn’t always that helpful).
If you are just going to be reading tutorials off the net, or not poking around much
yourself then it’s not too important – most tutorials will explain what enumerations
you’ll need to perform.

In the above example we first check for hardware transform and lighting capabilities,
the transform part is to do with vertex manipulation, and if it’s done in hardware
then it would imply that we can set up a device that uses the
D3DCREATE_HARDWARE_VERTEXPROCESSING flag. We then check for the presence
of the pure device option, which is the next step up from hardware transform and
lighting (therefore use this if it’s present). If this returns true then we can specify
D3DCREATE_PUREDEVICE when creating the device. On the other hand if both of
these return false we’ll just have to use
D3DCREATE_SOFTWARE_VERTEXPROCESSING. Lastly we check if the device type
can be created – we specify the type of device, the format and if it’s in windowed
mode or not; if this call evaluates to D3D_OK then we’ll be able to create a device
with the same parameters, if it doesn’t then we need to find some other parameters
– this will usually just mean changing to the Reference device – as the call we made
earlier to get the current display mode will of told us the correct format, and if we’re
using fullscreen modes then we’ll have enumerated the possibilities (more on that
later) – which only leaves the possibility that there’s no hardware device present. We
could avoid this completely and just remember what happened when we got the
enumeration data – and which device that came from.

 9

The Main Loop

This next part is fairly quick and simple, yet is important to any Direct3D application
– how the thing runs. Anyone who has paid any attention to a commercial game will
know about frame rates – how many times every second the computer is updating
the game; high frame rate is good, low frame rate is bad.

We now need to set up our application so that it runs on a loop, event based (where
we only update when something has changed) simply will not cut it here – you’ll be
wasting valuable time either doing nothing or trying to work out if something has
changed; and on top of that it’s almost always going to be changing. Secondly never
ever, ever, ever use a timer control or similar for this job – they are inaccurate and
slow, you may well be able to set them to 1ms, but in reality they’re only accurate to
about 50-100ms (maximum frame rate is therefore 10-20fps).

We’re going to use a loop instead – in theory a never ending loop. This loop will
execute as fast as possible, and will form the basis of our frame rate – the faster the
loop goes the higher the frame rate. This loop will use a simple Boolean flag to
determine if it’s running, as soon as this variable goes false the loop terminates and
we do something else (probably close the application down).

Here’s the code that the sample program uses:

Private Sub Form_Load()

Me.Show '//Make sure our window is visible

bRunning = Initialise()
Debug.Print "Device Creation Return Code : ", bRunning 'So you can see what happens...

Do While bRunning
 Render '//Update the frame...
 DoEvents '//Allow windows time to think; otherwise you'll get into a really tight (and bad) loop...

Loop '//Begin the next frame...

'//If we've gotten to this point the loop must have been terminated
' So we need to clean up after ourselves. This isn't essential, but it's
' good coding practise.

On Error Resume Next 'If the objects were never created;
' (the initialisation failed) we might get an
' error when freeing them... which we need to
' handle, but as we're closing anyway...
Set D3DDevice = Nothing
Set D3D = Nothing
Set Dx = Nothing
Debug.Print "All Objects Destroyed"

'//Final termination:
Unload Me
End
End Sub

As you can see straight away this code is all in the Form_Load event, which isn’t the
optimal place to put it. Whenever I design a bigger project I always put the control
loop as a Sub Main() in a separate control module and leave the form completely

 10

empty – and then all the subsequent code goes in classes (one for graphics, utilities,
maths, audio, physics, AI, Input, File handling and so on).

The first step is to make sure the form is visible, normally this wont happen until this
procedure has finished (which in our case wont happen till the program terminates),
as already mentioned, Direct3D wont function properly if the form isn’t visible or isn’t
loaded.

Next we initialise Direct3D, we place it’s return value in the Boolean on/off switch
(instead of the original method I showed you); the beauty of this is that if it returns
false on the first pass of the loop it’ll terminate itself.

In the middle we have the main loop, a Do While … Loop structure. At the moment
it’s made up of two statements, these will be the only two statements executed for
the vast majority of runtime. Place any additional calls or statements that you want
processed on a frame by frame basis. The key part here is to have a DoEvents call at
the end of the loop, without it your program will go down the pan very quickly – and
in most cases lock up the system. If this statement is not in here we wont receive
any messages, no input (keyboard, mouse) and the chances are that pure VB
language statements will not be executed properly. The DoEvents yields time for the
system (windows In this case) to think about things and do whatever it sees fit – if
other programs are running then they’ll have their time now, and if you’ve asked
windows to do anything it’ll probably happen now.

Lastly we have the termination code, as noted in the extract this is not necessarily
required – the DirectX library will see that objects are destroyed safely, but you can
never be sure from computer to computer – so it’s best to do it for yourself. As with
all other COM based interfaces destroy them in the reverse order from which they
were created.

 11

Render()

You should of noticed in the main loop code above that there was a call to the
Render() function on every pass of the main loop. It’s this code that actually
presents the graphics on the screen – and processes anything relevant to how the
graphics are displayed.

For this sample this code isn’t going to do anything greatly exciting – this is our first
DirectXGraphics application after all. The next couple of articles will explain the more
interesting parts…

Public Sub Render()
'//1. We need to clear the render device before we can draw anything
' This must always happen before you start rendering stuff...
D3DDevice.Clear 0, ByVal 0, D3DCLEAR_TARGET, &HCCCCFF, 1#, 0
'the hexidecimal value in the middle is the same as when you're using colours in HTML - if you're familiar
'with that.

'//2. Next we would render everything. This example doesn't do this, but if it did it'd look something
' like this:

D3DDevice.BeginScene
 'All rendering calls go between these two lines
D3DDevice.EndScene

'//3. Update the frame to the screen...
' This is the same as the Primary.Flip method as used in DirectX 7
' These values below should work for almost all cases...
D3DDevice.Present ByVal 0, ByVal 0, 0, ByVal 0
End Sub

Not too complicated, but trust me, it gets bigger and bigger as we start adding new
stuff. The render procedure always follows the same pattern – Clear, Draw, Display
on screen. The clear part removes whatever was left in the frame buffers, then we
draw everything – all our triangles, models and whatever else we fancy. Finally we
update the screen – when this call is finished whatever we just drew will appear on
the monitor.

As you learn more about DirectXGraphics, and as these articles go on this function
will be adapted and altered quite dramatically – it can get very big and quite
complicated. One thing to always bare in mind about this procedure (and any others
that you put in the main loop) is that they have to be fine tuned and as smooth as
possible – any untidy or slow code will have a massive impact on the overall speed of
your application. If each call takes 6ms to process, but something you do makes it
take 10ms instead your frame rate will drop from 167fps down to 100fps – it’s still
pretty fast, but assuming you have other things to do (AI, Audio, Physics and
general gameplay) then this drop will be more significant.

 12

Drawing Something – The theory

Okay, so you’ve learnt how to initialise a Direct3D application in visual basic – wow.
Hardly cutting edge visuals, and completely useless as well. So I’m pretty sure that
you want to learn how to draw something.

Drawing In Direct3D is extremely simple when you get your head around it, but it
requires a fair amount of work and memory before you can get to this point. The first
part is understanding what the different words mean – right now we’ll stick to the
simple definitions and elaborate on them as we get more advanced later on.

1. Vertices (plural of vertex)

A vertex can be thought of as a defining point – the corner of a triangle,
square or other shape. Using vertices we can construct 2D and 3D shapes with
various properties; a vertex will be described by a visual basic User Defined Type
(we’ll see these later) and are usually made up of a position, colour and texture
coordinates.

2. Polygon
 Polygons are what you’ll have heard about by “normal” people most of the
time – so and so 3D card pumps out 101 million polygons a second (or whatever), in
fact, Direct3D renders all of it’s primitives using triangles. But then again, a triangle
is the simplest possible polygon. Lists of triangles are stored as arrays of the vertex
type that you are using.

3. Face
 A face is usually 3 vertices arranged in some sort of polygon, but it also has
an orientation – you can tell which way it is facing. Direct3D interpolates vertex
components across a face, in particular colour – as we’ll be seeing later on. 3D
models (imported from 3D modelling programs) tend to be made up of 100’s or
1000’s of faces.

4. Textures
 A texture is applied to a triangle to make it look more real, Textures are just
2D bitmaps/pictures loaded from the hard drive into memory and then mapped to
relevant polygons during rendering. We will cover these in more detail later on.

5. Mesh
 A mesh is another word for a model – it is usually represented by one object
in the program, and contains 100s or 1000s of vertices and faces, along with all
relevant materials and textures. These will be covered later on.

Now you have those words floating around we can start doing some interesting
things. Don’t swear by the above definitions though – they are very lose and are only
there to offer a basic introduction to the terms, more complex and meaningful
definitions will be offered as and when they are necessary.

The first thing I want to cover is the 3 types of vertex that you can use. Whilst the
structure of Direct3D allows for 100’s of different combinations there are three types
that will serve most situations – and all other situations will be adaptations or
modification of these three.

 13

1. Untransformed and Unlit vertex
 These vertices are literally just points in 3D space with an orientation and a
set of texture coordinates. Direct3D will do the lighting for you – you set up some
lights, some vertices and it’ll do the rest. These tend to be the most commonly used
unless people opt for using lightmaps or pre-calculated lighting (as some commercial
games do).

2. Untransformed and Lit vertex
 These vertices are points in 3D space with texture coordinates like the first
type, but these ones have a colour value. This allows us to make proper 3D
geometry without having to worry about lighting. When we start doing 3D geometry
these will be the first type to use – as they’re the easiest.

3. Transformed and Lit vertex
 These are vertices specified in two dimensions – screen coordinates, all
Direct3D does is apply textures to them, clip them and draw them – you are
expected to specify a colour value and a valid 2D position. Using these are the only
way you will get Direct3D to do 2D graphics.

Yet more things to remember… But before we go through a simple demonstration of
how to use these vertices there is one more thing you need to know. Flexible Vertex
Formats. As I mentioned earlier, Direct3D allows for 100’s of possible vertex types –
it is through this system of Flexible Vertex Formats (FVF) that we achieve this. A
flexible vertex format description is a variable of type Long that is a combination of
flags that Direct3D can use to work out what format the data you pass it is in. If you
pass invalid, or incorrect for the data you use one of two things will happen –
Nothing will be rendered, something very strange will be rendered.

The vertex formats for the 3 main types look like this:

Const FVF_TLVERTEX = (D3DFVF_XYZRHW Or D3DFVF_TEX1 Or D3DFVF_DIFFUSE Or D3DFVF_SPECULAR)
Const FVF_LVERTEX = (D3DFVF_XYZ Or D3DFVF_DIFFUSE Or D3DFVF_SPECULAR Or D3DFVF_TEX1)
Const FVF_VERTEX = (D3DFVF_XYZ Or D3DFVF_NORMAL Or D3DFVF_TEX1)

And their UDT structures will look like this:

 14

Private Type TLVERTEX
 X As Single
 Y As Single
 Z As Single
 rhw As Single
 color As Long
 Specular As Long
 tu As Single
 tv As Single
End Type

Private Type LITVERTEX
 X As Single
 Y As Single
 Z As Single
 color As Long
 Specular As Long
 tu As Single
 tv As Single
End Type

Private Type VERTEX
 X As Single
 Y As Single
 Z As Single
 nx As Single
 ny As Single
 nz As Single
 tu As Single
 tv As Single
End Type

Right this second you don’t really need to know all of these – I put them in mainly
for reference purposes; those of you familiar with DirectX7 in visual basic, or DirectX
in another language may well want to jump ahead slightly.

In the next section we’ll extend our sample program to render some basic 2D and 3D
geometry in fullscreen mode. It may sound like a small task, but you’ve got the
mountain to climb yet my friend.

 15

Drawing Something – The Practical part

As already mentioned we render all our geometry using triangles (I prefer to use the
term triangles instead of polygon – but feel free to use whichever you prefer). These
triangles will be made up of a set of vertices; and these vertices will have a specific
set of properties depending on what they’re for.

It would therefore make sense that we had an array of one vertex type filled with
data – which is exactly what we’re going to do. As you can imagine this will get very
long – one line of code per vertex, 3 per triangle – even a simple cube can take up a
hundred or so lines of code… which is the reason why I’m going to keep this simple.

Step 1: Setting things up.

First we need to create an array of vertices:

Dim TriVert(0 To 2) As TLVERTEX '//we require 3 vertices to make a triangle...

Then we need to set a couple of parameters in the initialisation procedure:

D3DDevice.SetVertexShader FVF_TLVERTEX
D3DDevice.SetRenderState D3DRS_LIGHTING, 0

The first line tells the rendering device what type of vertex we’re going to be using –
pass the constant that we defined earlier here. The second parameter tells Direct3D
that we don’t want it to do the lighting – by default it will.

Step 2: Making the triangle

This is as simple as filling out the array with the required data, for clarity we’ll stick it
in a whole new procedure, which will be called at the end of the initialisation process:

Private Sub InitialiseGeometry()
 TriVert(0) = CreateTLVertex(0, 0, 0, 1, &HFF0000, 0, 0, 0)
 TriVert(1) = CreateTLVertex(175, 0, 0, 1, &HFF00&, 0, 0, 0)
 TriVert(2) = CreateTLVertex(0, 175, 0, 1, &HFF&, 0, 0, 0)
End Sub

Three things to note here; firstly we have a new function here – CreateTLVertex(),
this is a little helper function that I wrote to help in filling the structures with the
relevant data, it looks like this:

 16

Private Function CreateTLVertex(X As Single, Y As Single, Z As Single, rhw As Single, _
 Color As Long, Specular As Long, tu As Single, _
 tv As Single) As TLVERTEX
 CreateTLVertex.X = X
 CreateTLVertex.Y = Y
 CreateTLVertex.Z = Z
 CreateTLVertex.rhw = rhw
 CreateTLVertex.Color = Color
 CreateTLVertex.Specular = Specular
 CreateTLVertex.tu = tu
 CreateTLVertex.tv = tv
End Function

Secondly we have to specify the colour as a long, using the RGB() function wont
work properly here – it is possible to reverse the values and use it – RGB(B, G, R),
but if you can use hexidecimal it’s the preferred method. Think of it as the same as
an HTML colour code and you’ll be fine.

Thirdly, and more subtly is the order in which the vertices where created. This is
actually extremely important – get this wrong and Direct3D will cull (remove) your
triangles and not render them; It is often quite likely that this is the cause if you
make a program and nothing is rendered (yet appears to be set up correctly). If we
plot the triangle coordinates in order we will see the pattern – Clockwise:

You can set which type of triangle Direct3D will cull (Clockwise, Counter-Clockwise or
none), but by default it will cull counter-clockwise triangles, therefore rendering only
those that are in a clockwise order. You may well think that it’s easy just to stop it
from removing any triangles – whilst that is true it’s bad practise. If you can get into
the habit of generating your vertices in the correct order from the beginning then so
much the better; but it’s still useful to know how you specify the culling modes:

D3DDevice.SetRenderState D3DRS_CULLMODE, D3DCULL_NONE
D3DDevice.SetRenderState D3DRS_CULLMODE, D3DCULL_CW
D3DDevice.SetRenderState D3DRS_CULLMODE, D3DCULL_CCW

Fairly simple really, whichever you specify the opposite will be rendered; for
example, our triangles are clockwise ordered, therefore you should specify the above
as being D3DCULL_CCW (but that’s the default, so you don’t need to).

The last thing to note before we move on is to do with transformed and lit vertices.
As I told you, transformed and lit vertices are 2D – X and Y, so why is there a Z
coordinate? The Z-Coordinate should be on a 0.0 to 1.0 scale, and when a depth
buffer is attached (more on that later) triangles will be drawn over each other based

 17

on this value, for example – a triangle with a Z of 0 will go over a triangle with a Z of
1. And a Triangle with 3 different Z values will go through any other triangles that it
intersects…. If two triangles have the same Z value, whichever is rendered last will
appear on top.

Step 3: Rendering the triangle
We’ll now go back to our Render() procedure – as discussed earlier – and update it
to render our new triangle. At the moment we aren’t doing anything clever, no
textures, no transformations – so everything can be done with one call.

Later on we’ll use a more optimised method of rendering, and some more clever
tricks; but right now we’ll stick to the basics:

D3DDevice.BeginScene
 'All rendering calls go between these two lines
 D3DDevice.DrawPrimitiveUP D3DPT_TRIANGLELIST, 1, TriVert(0), Len(TriVert(0))

D3DDevice.EndScene

Simple as that really. We use the function “DrawPrimativeUP” to render a custom
type of vertex straight from memory – it is of type TRIANGLELIST (more in a
second), is made up of one triangle and uses the specified array with the specified
size. In more detail:

The first parameter is the primitive type, whilst Direct3D does all solid rendering as
triangles, but we can also render points and lines. The full range of options are listed
here:

D3DPT_POINTLIST: Direct3D draws each vertex as an unconnected point in 3D
space, just a single pixel dot on the screen. Useful for particle effects (but there are
better ways).
D3DPT_LINELIST: Every pair of entries specifies a pair of coordinates for Direct3D
to draw a line between (0 & 1, 2 & 3, 4 & 5 etc…)
D3DPT_LINESTRIP: Same as a line list, but the beginning of one line joins up with
the end of the previous – creating a continuous line through all the specified points.
D3DPT_TRIANGLELIST: Every triplet of vertices defines a new triangle – this will
be filled in solid, with colour components blended across it’s surface; this is the
method we currently use. (0-1-2 & 3-4-5 & 6-7-8-9 etc…).
D3DPT_TRIANGLESTRIP: Same as a triangle list, but it creates a series of
triangles all joining up; from the second triangle onwards each triangle uses the last
vertex of the previous triangle as it’s first vertex (0-1-2 & 2-3-4 & 4-5-6 etc…).
Colours are blended across the surface of these in the same way as a triangle list.
D3DPT_TRIANGLEFAN: draws a series of triangles all connected to the first vertex
– perfect for octagonal, hexagonal or circular type shapes. 0-1-2 & 0-3-4 & 0-5-6
etc… These triangles are drawn solid, and colour is blended across them.

There are numerous advantages and disadvantages to all of these methods; some of
more obvious than others. As a start you should already have guessed that the less
triangles you use the faster it goes – so try to keep them to a low number (without
looking nasty); more subtly, you should also keep the vertex count as low as
possible when creating geometry. This is on the basis that Direct3D will send all of
the data through the various cables, pipes and chips to the 3D card – and the more

 18

data you have to send the longer it takes; so the less vertices you use the faster the
data can be transmitted. When drawing a continuous line it would make perfect
sense to use a line strip. When dealing with triangles decide on what you need to do
– often it is faster and simpler to render something using a triangle strip, other times
it makes it more complicated and you should use a triangle list; then there is the
option of using a triangle fan for circular type objects. Experiment and see…

The second parameter is the primitive count, think of it as the number of triangles,
or number of points (depending on the primitive type). In this example we only
created one triangle, so have specified the fact that there is only 1 triangle.

The third parameter specifies where Direct3D should look for the vertex data, this
must be an entry in the array; usually the first entry – but it doesn’t have to be; just
remember that there needs to be the correct number of vertices left for the specified
primitive count.

The last parameter specifies how big (in memory bytes) our vertex structure is – this
is for Direct3D’s internal usage. You don’t really need to understand how it works,
but basically the third parameter points to the beginning of the memory to look for,
and Direct3D knows how many entries there will be (primitive count value), using
this parameter it can get the size of the structure, and therefore work out where all
the individual bits of data are, and how much memory the whole lot should take up.
Use Len() on the first element in the array for this.

Now that you can render simple 2D geometry you should practise it – try making a
square using the various methods, draw a circle-like object with a triangle fan; and
try making an arch or rounded rectangle using a triangle strip. If you look at almost
any basic geometric shape it will always break down into a series of triangles
(sometimes not very nicely), but with some basic maths skills it is easy to write an
algorithm that generates an arch (or whatever) from a series of triangles…

 19

Overview

You may well think that very little has been done in this article – you would be very
wrong thinking this. In the next articles we will cover all of the major aspects of
Direct3D programming – if there was anything that you didn’t follow in this article
(code wise) then it’s going to catch you out later. Trust me. I have written enough
DirectX applications that I can write a complete DirectX 7 and DirectX 8 program
similar to this off the top of my head in very little time.

The next article will advance our knowledge of geometry into the 3rd dimension;
along the way we’ll learn about vertex buffers, index buffers, fullscreen mode, depth
buffers, normals and some basic lighting – sound like fun? You bet ☺

Any feedback on this article is much appreciated, or if you have any questions I’d be
happy to try and help you out (but remember, I’m good, but I don’t know everything
[yet]). Drop me a message: Jack.Hoxley@DirectX4VB.com , or visit my main
programming site, www.DirectX4VB.com for a massive collection of over 100
tutorials and 25 articles…

 20

mailto:Jack.Hoxley@DirectX4VB.com
http://www.vbexplorer.com/directx4vb/

Welcome back to part 2 of this mini-series, hopefully you’ve read and learnt
the information covered in the first part (thanks to all the complements I received
about the first article), this article starts where the last one left off – things will not
be covered twice, so make sure you know what happened in the first article…

 By the time you’ve read and learnt the things I am about to cover you should
be perfectly capable of creating a simple game/demo – which shows you how quickly
you can get started in Direct3D. Having said this, don’t expect to finish this article
(or this series) and go on to write the next big 3D engine – it wont happen, I’ve had
many emails from people who’ve only read the first couple of tutorials on the basics
of D3D and want to get straight on with a “Simple” quake clone… try something like
pong/tetris/snakes first.

 This article is going to be quite steep – the things covered may well not come
to you easily, if not, re-read the article until it does or seek out other beginners
guides to 3D graphics / theory. Today we’ll be covering:

1) Setting up the sample application to go full-3D.
2) Extending the last example to use basic 3D geometry.
3) Extending this further to use vertex buffers and index buffers.

The above 3 things would usually be covered by several articles, as they are
deceptively big topics, anyway, onwards and upwards!

 21

Reconfiguring our Direct3D application
The sample at the end of the last article was very simplistic – not much use

for anything really, before we go into full-3D we’ll need to add a few parameters and
configure a few new things.

I also want to take the time to introduce full screen mode, this is the main
display format used by games, where, funnily enough, your game occupies the entire
screen. Full screen mode is much faster, and isn’t held back by windows (which is
effectively suspended in the background). Full screen mode requires you to pick a
resolution that the hardware/monitor combination can handle – open up the windows
display properties and see what settings you can set the resolution slider to – these
(but not always) will be the display modes that Direct3D can use on your hardware.
800x600, 1024x768 are examples of full screen modes. The important thing about
this is that the resolutions available will differ from one computer to another –
640x480, 800x600, 1024x768 all tend to be standard resolutions, but there is no
guarantee that they will be available (only 1 of my 2 computers supports 1024x768
display modes). To solve this problem we must use enumeration.

Dim tmpDispMode As D3DDISPLAYMODE '//used during the enumeration of avail. modes
Dim I As Long '//so we can loop through the avail. display modes

For I = 0 To D3D.GetAdapterModeCount(0) - 1 'primary adapter
 D3D.EnumAdapterModes 0, I, tmpDispMode
 Debug.Print tmpDispMode.Width & "x" & tmpDispMode.Height
Next I

The previous piece of code will output a list of all the display modes supported by
your hardware to VB’s immediate (debug) window. The code will need to go at the
start of the Initialise() function, but after the Dx and D3D objects have been
initialised. The output of the above code, for my GeForce 256 + generic 15” monitor
was:

320x200
320x240
400x300
480x360
512x384
640x400
640x480
800x600
960x720
1024x768
1152x864
1280x960
1280x1024
320x200
320x240
400x300
480x360
512x384
640x400
640x480
800x600
960x720
1024x768
1152x864

 22

1280x960
1280x1024

So why are there two of each resolution? Its not a mistake, it’s down to the format of
the display mode. Anyone paying any attention to games will know that you can
have 32 bit and 16 bit rendering (amongst various other formats) – the above list
does not contain that data, but the first copy of the resolutions will be in 16 bit
format, the second set will be in 32 bit format. This requires some discussion:

D3DFMT_A1R5G5B5
D3DFMT_A4R4G4B4
D3DFMT_A8R3G3B2
D3DFMT_A8R8G8B8
D3DFMT_DXT1
D3DFMT_DXT2
D3DFMT_DXT3
D3DFMT_DXT4
D3DFMT_DXT5
D3DFMT_R5G6B5
D3DFMT_R8G8B8
D3DFMT_X1R5G5B5
D3DFMT_X4R4G4B4
D3DFMT_X8R8G8B8

Above is a selection of members from the enumeration type “CONST_D3DFORMAT” –
which we’ll be using later. All of the above describe a format that the display mode
should be in, such as 32 bit/16 bit – but it’s not as simple as saying 16 or 32 bit…
you can work it out by counting the number of bits in the description:

D3DFMT_X8R8G8B8

Add up the 8’s and you get 32 – which indicates that D3DFMT_X8R8G8B8 is a 32 bit
mode, all of the ones above are either 16 or 32 bit format (except the
D3DFMT_DXT* ones). The next part to notice is the lettering – indicating the
channel, all of them will have an RGB triplet – Red, Green and Blue – you should all
know that colours on a computer screen are made up of these 3 colours, even using
paintbrush you could probably see this in action. We also have an optional X or A
channel, the X just means unused, there are bits allocated, but they wont have
anything in them, and wont be used for anything. The A channel is alpha, something
that will be covered later on. If you don’t need alpha blending/transparencies then
you’ll be okay using an X****** format, if you need alpha but accidentally use an
X******* format nothing will happen – or at least what you want to happen won’t.

A word on accuracy, the more bits to a channel the more colours you can represent,
which is why the 32 bit formats will looks substantially better than the 16 bit
formats. A channel can represent 2^n (where n is the number of bits) colours. An 8
bit channel can therefore represent 2^8 colours = 256 colours, a 4 bit channel can
only represent 2^4 channels = 16 colours. You may have noticed that there is an
R5G5B5 format and an R5G6B5 format – this is down to the fact that our eyes are
more sensitive to green light, so being able to represent more colours in the green
channel is better. On a connected, but not particularly useful note – the total number
of colours supported by a display mode will be 2^n again, where n is the total
number of bits being used, not including the X channel. I tend not to include the A

 23

channel in my calculations, but you can if you want. Therefore a 16 bit colour will
have 2^16 colours = 65536, and a 32 bit colour will have 2^32 colours =
4,294,967,296 – roughly 4.3 billion…

Now (hopefully) we have an understanding of display formats, we can go about
setting one up. I’ve written a small function that will check for support of a specified
display mode – it works fine for this tutorial, but you’ll probably need a more rigid
function for a proper project:

Private Function CheckDisplayMode(Width As Long, Height As Long, Depth As Long) As CONST_D3DFORMAT
'//0. any variables
 Dim I As Long
 Dim DispMode As D3DDISPLAYMODE

'//1. Scan through
 For I = 0 To D3D.GetAdapterModeCount(0) - 1
 D3D.EnumAdapterModes 0, I, DispMode
 If DispMode.Width = Width Then
 If DispMode.Height = Height Then
 If DispMode.Format = D3DFMT_R5G6B5 Or D3DFMT_X1R5G5B5 Or D3DFMT_X4R4G4B4 Then
 '16 bit mode
 If Depth = 16 Then CheckDisplayMode = DispMode.Format: Exit Function
 ElseIf DispMode.Format = D3DFMT_R8G8B8 Or D3DFMT_X8R8G8B8 Then
 '32bit mode
 If Depth = 32 Then CheckDisplayMode = DispMode.Format: Exit Function
 End If
 End If
 End If
 Next I
CheckDisplayMode = D3DFMT_UNKNOWN
End Function

ERRATA: several lines in the above code do not work correctly (I have left the original source visible).
Where it uses “DispMode.Format = **** or **** or *****” code, it will be evaluated incorrectly. Change
this to be “DispMode.Format = **** or DispMode.Format = **** or DispMode.Format = ****” and it will
work fine.

Fairly simple really, it assumes that the D3D object has been created, and will use
the global copy of the object – if it hasn’t been created this piece of code will error-
out. The only slightly complicated part is the format selection, it defines formats as
either 16 bit or 32 bit – whilst the 32 bit selection technically includes a 24 bit
format, colour wise it’s identical. I’ve not checked against formats with alpha
components – the display mode wont use an alpha channel, that’s for texturing –
you can set up a display mode with an alpha channel, but there’s little point, on top
of that the formats listed here are more likely to be supported than the equivalent
with an alpha channel. We can extend the usage of this function to help select the
samples display mode – we’ll hard code this part rather than spend time building a
user interface in to allow the user to select the resolution – it’s not hard to do that,
and you can probably work it out as you need it.

 24

DispMode.Format = CheckDisplayMode(640, 480, 32)
If DispMode.Format > D3DFMT_UNKNOWN Then
 '640x480x32 is supported
 DispMode.Width = 640: DispMode.Height = 480
Else
 DispMode.Format = CheckDisplayMode(640, 480, 16)
 If DispMode.Format > D3DFMT_UNKNOWN Then
 '640x480x16 is supported
 DispMode.Width = 640: DispMode.Height = 480
 Else
 'hmm, neither are supported. oh well...
 MsgBox "Your hardware does not appear to support" _
 & " 640x480 display modes in either 16 bit or 32 bit modes. Exiting" _
 , vbInformation, "Error"
 Unload Me
 end

 End If
End If

Not too complicated really. We could check for higher resolutions, but for this sample
it isn’t really necessary. By the time this little segment of code has been executed we
will have a properly initialised, valid D3DDISPLAYMODE structure that we can use
when setting up our device. If it could not create the structure it will exit out of the
program.

We aren’t done yet though, we need to fill out the D3DPRESENT_PARAMETERS
structure differently from the windowed mode example. This is mostly down to the
device creation requiring more data than in the last sample. The new configuration
looks like this:

D3DWindow.BackBufferCount = 1
D3DWindow.BackBufferFormat = DispMode.Format
D3DWindow.BackBufferWidth = DispMode.Width
D3DWindow.BackBufferHeight = DispMode.Height
D3DWindow.hDeviceWindow = frmMain.hWnd
D3DWindow.AutoDepthStencilFormat = D3DFMT_D16
D3DWindow.EnableAutoDepthStencil = 1
D3DWindow.SwapEffect = D3DSWAPEFFECT_COPY_VSYNC

Notice that we’re copying the display mode format information to the structure at
this point, you could avoid this by writing straight to this structure – but for clarity I
left it separate.

The first section deals with configuring a backbuffer. Anyone who’s done any work
with DirectDraw/Direct3D in DirectX7 will already know what one of these is (you
should do). When Direct3D does the actual rendering of 3D geometry onto a 2D
surface it will do it in parts, usually as each piece of geometry is rendered. If we
rendered straight to the screen in all but the highest frame rate situations you would
be able to see the screen being drawn piece by piece – even if it was going quite
quickly you’d be able to pick up on strange artefacts appearing – a tree appearing
and quickly being overwritten by the house in front of it (for example). To solve this
problem we use a secondary buffer, the image is composed on this surface (an

 25

identical size to the screen), and then the whole contents of the backbuffer are
copied to the screen in one quick operation (its not actually copied, the
addresses/pointers are switched around). This removes the possibility of any drawing
artefacts appearing – or at least it should do… We configure our backbuffer here
using our display mode, we never actually configure the screen surface, D3D will
take the measurements specified in the backbuffer members and use those – saves
on any simple data mis-matching errors.

The second part deals with configuring the depth buffer. This is another concept that
you’ll need to grasp when dealing with 3D environments. In 3D we, obviously, have
3 dimensions, XYZ, and in 2D we only have X and Y, when we want to project our 3D
scene onto our 2D screen we need to know what happens to this 3rd dimension. As
things are converted into 2D in any given order we will need to check if the current
part we are drawing is in front of, or behind the current piece of scene in the frame
buffer (the screen/backbuffer). Or in more technical language, when we draw a pixel
in 2D we check it’s depth coordinate against that stored for the same location in
depth buffer (which will hold the depth for the pixel currently in the frame buffer), if
the depth is greater (the new pixel is behind the old one) then it wont be drawn, if
the depth is les (the new pixel is in front of the old one) then it will draw it over the
top of existing pixel. The depth buffer, is therefore a surface identical in dimensions
to the screen and backbuffer. The only involvement we’ll ever have with it is telling
D3D we want to use it, turning it on and clearing it before each frame (to remove the
depth information from the previous frame). The only important part at this stage is
specifying what format the depth buffer will be in – similar to the way we specified
what format the screen/backbuffer will be in. The more bits allocated to each pixel
the more accurate the depth testing will be, typically they come as standard at
16bits per pixel, newer hardware is allowing 24 bit or 32 bit depth buffers (usually as
combinations with a stencil buffer). We can enumerate what depth buffer modes are
available using the following code:

 26

'In order of preference: 32, 24, 16
If D3D.CheckDeviceFormat(D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL, DispMode.Format, _
 D3DUSAGE_DEPTHSTENCIL,
 D3DRTYPE_SURFACE, D3DFMT_D32) = D3D_OK Then
 '//Enable a pure 32bit Depth buffer
 D3DWindow.AutoDepthStencilFormat = D3DFMT_D32
 D3DWindow.EnableAutoDepthStencil = 1
 Debug.Print "32 bit Depth buffer selected"
Else '//search for a 24 bit depth buffer

 If D3D.CheckDeviceFormat(D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL, _
 DispMode.Format, D3DUSAGE_DEPTHSTENCIL,
 D3DRTYPE_SURFACE, D3DFMT_D24X8) = D3D_OK Then
 '//Enable a 24 bit depth buffer
 D3DWindow.AutoDepthStencilFormat = D3DFMT_D24X8
 D3DWindow.EnableAutoDepthStencil = 1
 Debug.Print "24 bit Depth buffer selected"
 Else
 If D3D.CheckDeviceFormat(D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL, _
 DispMode.Format, D3DUSAGE_DEPTHSTENCIL,
 D3DRTYPE_SURFACE, D3DFMT_D16) = D3D_OK Then
 '//Enable a 16 bit depth buffer
 D3DWindow.AutoDepthStencilFormat = D3DFMT_D16
 D3DWindow.EnableAutoDepthStencil = 1
 Debug.Print "16 bit Depth buffer selected"
 Else
 '//hmm. No depth buffers available... Dont use one then :)
 D3DWindow.EnableAutoDepthStencil = 0
 Debug.Print "no Depth buffer selected"
 End If
 End If
End If

But for clarity this sample just uses a 16 bit depth buffer, in about 99% of cases the
hardware will support a 16 bit depth buffer – which is perfectly acceptable for most
3D environments. If one is not available in hardware you may find that Direct3D will
emulate ones existence – which is much slower, but it will still function.

The last two things to discuss are the .hDeviceWindow member, and the .SwapEffect
member. These are not complicated, the first parameter, hDeviceWindow needs to
be the hWnd property of the form that you are using – this is so that Direct3D can
keep track of your application/window, if the form is closed, minimised or moved
Direct3D can find out. The SwapEffect member indicates how Direct3D should draw
to the screen, there are two main choices here, V-Sync or not. Hopefully you are
aware of the monitors refresh rate – or how it works, if you use V-Sync then
Direct3D will wait until a vertical refresh event occurs before drawing the next frame,
therefore, if you only have a 70hz monitor the maximum frame rate will be around
70fps (not always exactly) – using a v-sync is usually better quality than without as
it performs the copy at the same time as the monitor and no artefacts should
appear. Disabling V-Sync forces Direct3D to copy the frame buffers to the screen as
soon as it’s finished rendering – using this method you can achieve considerably
higher frame rates (if it’s being locked to the refresh rate that is…) at the cost of
visual artefacts; whilst it doesn’t affect some hardware (mine is fine), on others you
can get a visible tear line across the screen – where one frame is above and one
frame (usually the previous) is below, if this happens it will look pretty ugly! Also
note that the drivers have the ability to override these settings, my drivers are setup

 27

to ignore v-sync, and I cant, programmatically, force it to use the V-sync; vice-versa
when I enable v-sync in the driver properties. The available choices for the
SwapEffect member are:

D3DSWAPEFFECT_COPY
D3DSWAPEFFECT_COPY_VSYNC
D3DSWAPEFFECT_DISCARD
D3DSWAPEFFECT_FLIP
D3DSWAPEFFECT_FORCE_DWORD

The 3 bolded entries are the ones that you should be using. The _COPY member is
for a single backbuffer (like ours) that ignores V-Sync where possible, the
_COPY_VSYNC option is the same, but will lock drawing to the monitors refresh rate.
The _FLIP member is the same as the _COPY member except for multiple
backbuffers (usually when you have 2).

Now we’ve covered the redesigned initialisation process. At last… There are two final
lines that we should add after the device has been created:

D3DDevice.SetRenderState D3DRS_ZENABLE, 1

That will enable our depth buffer (AKA Z-Buffer) for rendering. And this next line
goes in place of the current line in the Render() function:

D3DDevice.Clear 0, ByVal 0, D3DCLEAR_TARGET Or D3DCLEAR_ZBUFFER, &HCCCCFF, 1#, 0

All that’s changed there is that it’s clearing the depth buffer as well as the frame
buffers. If you leave this line out you’ll start getting some strange artefacts
appearing (you can use it to your advantage) where the new scene is drawn
according to the depth information of the previous scene…

If you now run the program (F5 or Ctrl+F5 in the IDE) you should be greeted with a
640x480 light blue screen and a small triangle in the top left corner – identical to the
sample in the last example – but in fullscreen!

 28

Getting Started With Basic 3D Geometry
Now things start to get more fun. What we’ve done so far could be seen as being
fairly boring, just setting up the foundations for bigger things really…

Luckily, now that the initialisation process is sorted out quite nicely adding the ability
to use 3D geometry will be quite straight forward, if you read the first article
properly you’ll find that a lot of the ground work for geometry has already been laid
down. To summarise the relevent key points brought up in the first article:

• 3D Geometry is still made up of vertices and triangles.
• Triangles must be created in a clockwise order (unless you change it to
CCW/none).

Simple as that really, the only major change is going to be the switch from using 2D
vertex coordinates into using 3D vertex coordinates, which cant be too hard can it?
You also need to remember that it’s all relative to the camera viewpoint rather than
to the screen (2D) coordinates.

The next part of the sample program we’re going to design will render a small 3D
cube on the screen, then we’ll use this as a base to learning more of the
manipulation features that Direct3D exposes for us (Matrices). First, take the user
defined type and FVF description from the last article:

Const FVF_LVERTEX = (D3DFVF_XYZ Or D3DFVF_DIFFUSE Or D3DFVF_SPECULAR Or D3DFVF_TEX1)

Private Type LITVERTEX
 X As Single
 Y As Single
 Z As Single
 Color As Long
 Specular As Long
 tu As Single
 tv As Single
End Type

This particular vertex is pre-lit by us, that means that we must specify the colour of
the vertex rather than let Direct3D light it for us (lighting will be covered later). We’ll
also use a little helper function CreateLitVertex() to help us initialise the structures,
this is very similar to the one in the previous article, if you are unclear as to the
exact nature of it have a look at the sample code for this article…

Now that we have the vertex descriptor/UDT set up we need to define the vertex
structures for our cube. For this sample we’re going to use 36 vertices:

Dim CubeVerts(0 To 35) As LITVERTEX

Why are we using 36 vertices for a 6 sided/8 cornered object? A cube has 6 square
faces, to make up a square we require 2 triangles, therefore we have 12 triangles in
total. Each triangle requires 3 vertices, hence the 36 figure. Later on we’ll learn how

 29

to reduce the number of vertices in the cube to 8, but for a first example this will do
fine…

 30

Private Sub InitialiseGeometry()
'//0. Any Variables

'//1. Define the colours at each corner
 Const Corner000 As Long = &HFF0000 'red
 Const Corner001 As Long = &HFF00 'green
 Const Corner010 As Long = &HFF 'blue
 Const Corner011 As Long = &HFF00FF 'magenta
 Const Corner100 As Long = &HFFFF00 'yellow
 Const Corner101 As Long = &HFFFF 'cyan
 Const Corner110 As Long = &HFF8000 'orange
 Const Corner111 As Long = &HFFFFFF 'white

'//2. Define the faces
 'top
 CubeVerts(0) = CreateLitVertex(-1, 1, -1, Corner010, 0, 0, 0)
 CubeVerts(1) = CreateLitVertex(1, 1, -1, Corner110, 0, 0, 0)
 CubeVerts(2) = CreateLitVertex(-1, 1, 1, Corner011, 0, 0, 0)

 CubeVerts(3) = CreateLitVertex(1, 1, -1, Corner110, 0, 0, 0)
 CubeVerts(4) = CreateLitVertex(1, 1, 1, Corner111, 0, 0, 0)
 CubeVerts(5) = CreateLitVertex(-1, 1, 1, Corner011, 0, 0, 0)

 'bottom
 CubeVerts(6) = CreateLitVertex(-1, -1, -1, Corner000, 0, 0, 0)
 CubeVerts(7) = CreateLitVertex(1, -1, -1, Corner100, 0, 0, 0)
 CubeVerts(8) = CreateLitVertex(-1, -1, 1, Corner001, 0, 0, 0)

 CubeVerts(9) = CreateLitVertex(1, -1, -1, Corner100, 0, 0, 0)
 CubeVerts(10) = CreateLitVertex(1, -1, 1, Corner101, 0, 0, 0)
 CubeVerts(11) = CreateLitVertex(-1, -1, 1, Corner001, 0, 0, 0)

 'left
 CubeVerts(12) = CreateLitVertex(-1, 1, -1, Corner010, 0, 0, 0)
 CubeVerts(13) = CreateLitVertex(-1, 1, 1, Corner011, 0, 0, 0)
 CubeVerts(14) = CreateLitVertex(-1, -1, -1, Corner000, 0, 0, 0)

 CubeVerts(15) = CreateLitVertex(-1, 1, 1, Corner011, 0, 0, 0)
 CubeVerts(16) = CreateLitVertex(-1, -1, 1, Corner001, 0, 0, 0)
 CubeVerts(17) = CreateLitVertex(-1, -1, -1, Corner000, 0, 0, 0)

 'right
 CubeVerts(18) = CreateLitVertex(1, 1, -1, Corner110, 0, 0, 0)
 CubeVerts(19) = CreateLitVertex(1, 1, 1, Corner111, 0, 0, 0)
 CubeVerts(20) = CreateLitVertex(1, -1, -1, Corner100, 0, 0, 0)

 CubeVerts(21) = CreateLitVertex(1, 1, 1, Corner111, 0, 0, 0)
 CubeVerts(22) = CreateLitVertex(1, -1, 1, Corner101, 0, 0, 0)
 CubeVerts(23) = CreateLitVertex(1, -1, -1, Corner100, 0, 0, 0)

 'front
 CubeVerts(24) = CreateLitVertex(-1, 1, 1, Corner011, 0, 0, 0)
 CubeVerts(25) = CreateLitVertex(1, 1, 1, Corner111, 0, 0, 0)
 CubeVerts(26) = CreateLitVertex(-1, -1, 1, Corner001, 0, 0, 0)

 CubeVerts(27) = CreateLitVertex(1, 1, 1, Corner111, 0, 0, 0)
 CubeVerts(28) = CreateLitVertex(1, -1, 1, Corner101, 0, 0, 0)
 CubeVerts(29) = CreateLitVertex(-1, -1, 1, Corner001, 0, 0, 0)

 'back
 CubeVerts(30) = CreateLitVertex(-1, 1, -1, Corner010, 0, 0, 0)
 CubeVerts(31) = CreateLitVertex(1, 1, -1, Corner110, 0, 0, 0)

 31

 CubeVerts(32) = CreateLitVertex(-1, -1, -1, Corner000, 0, 0, 0)

 CubeVerts(33) = CreateLitVertex(1, 1, -1, Corner110, 0, 0, 0)
 CubeVerts(34) = CreateLitVertex(1, -1, -1, Corner100, 0, 0, 0)
 CubeVerts(35) = CreateLitVertex(-1, -1, -1, Corner000, 0, 0, 0)
End Sub

Doesn’t that look so pretty! Well, not really…
Theres nothing more to this that brute force calculations, I went through (took me
about 10 minutes) working out which vertex would have what coordinate, and then
what colour it would have. I used a set of constants to set the colours, as it makes it
much easier when you want to change the colour of a given corner – saves you
having to search through all 36 changing the wrong/old values for the new ones.
Now that the array of vertices is completed we can render them in an almost
identical way to last time:

D3DDevice.BeginScene
 'All rendering calls go between these two lines
 D3DDevice.DrawPrimitiveUP D3DPT_TRIANGLELIST, 12, CubeVerts(0), Len(CubeVerts(0))
D3DDevice.EndScene

Hardly complicated really is it? However, if you now run the project to see what it
looks like you’ll be surprised by the result – a big yellow/magenta/white square
covering the entire screen. Great – not like the pretty coloured cube we were aiming
for. This is because we “forgot” (or I didn’t tell you) about one major thing that
needs to be set up: Projection, World and View Matrices.

 32

Matrices And Transformations

If you think about it logically, we have not yet told Direct3D where we’re looking
from, or where we’re looking at – or what properties our camera has. Which is what
we now need to set up. Matrices are used a lot in Direct3D (as in most 3D API’s I do
believe), they control transformations of world geometry (we’ll see that later), they
control the configuration of the camera, and the information about where the camera
is/where it’s looking at. The actual maths behind matrices is quite complicated, and
you don’t really need to know why they work – or even how they do what they do,
you can get along fine in Direct3D by just knowing how to use them. There are 3
types of matrix that we need to set up, they are:

The Projection Matrix
This matrix is usually configured during initialisation and left alone for the rest of the
time, you can alter it other times to achieve effects such as zooming, but in general
you probably wont need to.

D3DXMatrixPerspectiveFovLH(

MOut as D3DMatrix,
fovy as Single,
Aspect as Single,
zn as Single,
zf as Single)

Above is the function prototype for the projection matrix altering function. There are
others, but for 99% of Direct3D applications this one will be perfectly acceptable.
The parameters should be used like so:

MOut : An empty (not a requirement though) D3DMatrix structure that will be filled
with the relevant details of a projection matrix
fovy : This is the view angle for the camera, the wider the angle this is set at the
more “stuff” you’ll see on the screen. This is often set at 45, 60 or 90 degrees – but
as it’s measured in radians (not degrees) you should specify it in terms of PI, so the
above list becomes Pi/4 , Pi/3 and Pi/2 – there are 2Pi radians in 360 degrees,
therefore 1 Pi radians in 180 degrees, so dividing by 2 (for example) would give us
the equivalent value (in radians) of 90 degrees.
Aspect : This is the aspect ratio for the projection matrix. Leave this at 1 unless
you’re trying to do weird stuff ! experiment setting it to <1 or >1 value (as in 0.1 or
2, not 20000), you’ll notice that things look a little bit strange afterwards. In general,
less than 1 stretches the geometry vertically, greater than 1 stretches the geometry
horizontally.
zn : This is the near clipping plane. Any geometry closer than this to the camera will
automatically be not-rendered, or clipped so that only the visible area is rendered.
Leave this to something like 0.1 for the best results.
zf : this is the far clipping plane, as with the near plane, anything beyond this point
(from the camera) will not be rendered, or will be clipped. If you are going to have a
lot of things on screen it’s best to keep this as close as possible – otherwise you’ll
end up rendering lots and lots of stuff that might not be visible.

The set up used in the example source code is:

 33

D3DXMatrixPerspectiveFovLH matProj, PI / 3, 1, 0.1, 75

Finally, we’ve created the matrix structure (matProj in this case) – but Direct3D
doesn’t necessarily know it exists – so we must tell it. We use the following line,
which must only be called AFTER a successful device creation:

D3DDevice.SetTransform D3DTS_PROJECTION, matProj

From now until the next time this call is made (with a different matrix) all rendering
will take place using this matrices configuration – 60 degrees view and a 75 meter
draw depth.

 34

The View Matrix
This is basically for configuring the camera. When we set this up we can tell Direct3D
where the camera is, and where it’s looking at. Direct3D will then use this matrix in
conjunction with the projection matrix to decide what is going to be rendered – and
how it’s projected onto the screen.

D3DXMatrixLookAtLH (
 MOut as D3DMATRIX,
 VEye as D3DVECTOR,
 VAt as D3DVECTOR,
 VUp as D3DVECTOR)

Not too complicated really. The MOut parameter will be the structure that’s filled with
the relevant information. Veye is the position of the camera – where the player is
looking from. Vat is the position of the target – the center of the screen (in 2D) will
be this point in 3D Space. Vup is a proper vector (rather than a position) that tells
D3D which way is up, using this you could make it render upside down…

The line from the sample code looks like:

D3DXMatrixLookAtLH matView, MakeVector(0, 5, 2), MakeVector(0, 0, 0), MakeVector(0, 1, 0)

Above we’re using a simple inline function that returns a D3DVECTOR based on the
parameters, it’s quite simple and you can see it in the sample code. The actual code
here tells D3D that the camera is place a little bit up and forward of the origin, and
looking at the origin, and up is in the positive Y axis. As with the projection matrix
you need to tell D3D that you want to use this camera set up for the duration until
you change it again:

D3DDevice.SetTransform D3DTS_VIEW, matView

 35

The World Matrix
This is a more interesting one – it is quite likely that you’ll set up and reuse this
matrix 10 or more times every frame. It also matters how you set it up – whilst
there are several helper functions to set a world matrix up a lot of it is still down to
you.

First off then, what is a world matrix? The world matrix is applied to all geometry
that is rendered, you can have translations (moving it around), scaling
(bigger/smaller) and rotations. If you have a 2x scaling matrix applied then all
geometry that’s rendered after that point will be twice as big as the actual vertex
coordinates.

Secondly, why do we want to use them? The world matrix is an extremely fast and
efficient way of manipulating your vertices – rather that you having to rotate and
translate (for example) the raw vertex structures you can set up a world matrix and
it will do it all for you. You also have the added advantage of being able to
manipulate a single set of vertices to be many objects. For example, the cube we’ve
made – you could render it in one position with one texture, then alter the world
matrix and render it again with a different texture in a different position – and whilst
there is only one physical set of vertices the user will see two essentially different
cubes on the screen at the same time.

So they seem to be the perfect answer to what we need (they are, that’s why!) –but
before we do a quick run through of how to use them I’m going to confuse you
(unless you’re a good mathematician). To combine transformation matrices (The
world matrix is a combination of 1 or more of these) we multiply them together, and
in the normal world of maths A x B = B x A, remember? Well, in matrix land A x B
does not equal B x A. In which case it matters what order we set up our world
matrix. Great – things suddenly got complicated.

There are 3 main types of transformation that you will be applying to the world
matrix – Rotation, Scaling and Translation. All of them can be applied around one or
more of the axis’ – X, Y or Z. Whilst there’s no reason why you cant change the
order, it will tend to be Rotation then Scaling and lastly translations. The reason for
translating last is that the other two are calculated about the origin – all vertices are
rotated around the point [0,0,0] and all vertices are scaled from the point [0,0,0].
Therefore if you translate something to [10,0,0] first, then rotate it around the Y axis
you’ll get the object doing a loop (which might be what you want), but if you rotate
it then translate it then you’ll get the object at [10,0,0] and spinning on the spot.

Sometimes these things are hard to visualise – but experiment with them and see
what results you get from different orders. A further analogy could be the car wheel.
Imagine a car wheel that, whilst driving normally, rotates around the X axis, if the
car takes damage and the wheel is bent out of place we may choose to rotate it a
constant 15 degrees around the Z axis (so it appears bent inwards); if we rotate it
around the Z axis first then the X axis we’ll get the wheel oscillating in and out at the
top and bottom as the wheel goes around – the part that’s bent outwards will rotate
around with the wheel. If we rotate around the X axis first then the Z axis the wheel
will revolve normally, except appear to be leaning in one direction – depending on
which way the Z axis was rotated either the top of the wheel will stick out and the
bottom will stick in – or vice versa. Think about it…

 36

Whilst I’ve already touched upon this, it is often important to make all geometry
relevant to the origin. Geometry is rotated around it, scaled about it and translated
relative to it – if your geometry is centred around the point [10,0,0] and you
translate it by 10 units along the X axis the centre will become [20,0,0]… which is
why the cube that we’ve already generated has all it’s coordinates + or – 1 unit of
the origin.

Before we move onto the actual sample code for these transformations we’ll quickly
discuss the structure of setting up the world matrix. Matrices are held in a structure
called D3DMATRIX, we will have one master matrix and one temporary matrix. The
temporary matrix will be rest each time and have a new transformation applied, then
it will be combined (through matrix multiplication) with the master matrix. This looks
like this:

1) Define a Temporary and master matrix
2) Set both to the identity matrix

3) Rotate the temporary matrix around the X axis
4) Multiply the master and temporary matrix

5) Set the temporary matrix to the identity matrix
6) Rotate the temporary matrix around the Y axis
7) Multiply the master and temporary matrix

8) Set the temporary matrix to the identity matrix
9) Rotate the temporary matrix around the Z axis
10) Multiply the master and temporary matrix

11) Set the temporary matrix to the identity matrix
12) Scale the temporary matrix by any amount
13) Multiply the master and temporary matrix

14) Set the temporary matrix to the identity matrix
15) Translate the temporary matrix
16) Multiply the master and temporary matrix

17) Commit the master matrix to the device so that it is applied to all subsequent
rendering.

Not too complicated really – you’ll pick it up really quickly. There are two things in
the above that I haven’t yet covered. The first is the identity matrix, when you
create a new matrix type it will have 4x4 singles set out with a value of 0. if you
made direct3D use this matrix nothing would appear – the scale Is set to 0, so at
most all you’d see is a coloured dot at the origin. The identity matrix is one where
the scaling values are set to 1.0, and any geometry rendered using it will not be
altered at all – it appears in 3D space as it was laid out in the raw vertex data. It is
important to reset the temporary matrix each time – otherwise you can get it
accumulating multiple transformations in a strange way and you’ll get some truly
strange results! The second thing is the multiplication part. As initially mentioned,
[A][B] does not equal [B][A], so this line has to be in a specific order – you can get
slightly different effects depending on which way around its done, but I strongly
suggest you choose a preferred order and stick with it – I have always multiplied the
world matrix by the temporary matrix – it’s worked fine for me and should do for

 37

you. The same goes with what order you rotate it – as mentioned in the wheel
analogy, XYZ is very different from ZXY (or any other combination), Unless I need it
to be done in another way I stick with XYZ – you can use that or change it – it’s up
to you…

Okay… So I do believe we’re now ready to look at some proper code (at last!), the
sample project only does rotation – you can see it as a small challenge to rewrite the
sample so that the cube is translated and scaled (perhaps based on input from the
user)…

There are 7 functions to perform the translations – there are lots more, but I’ll let
you explore them later on (they tend to be more specialised). These are:

D3DXMatrixIdentity(MOut As D3DMATRIX)

D3DXMatrixMultiply(MOut As D3DMATRIX, M1 As D3DMATRIX, M2 As D3DMATRIX)

D3DXMatrixRotationX(MOut As D3DMATRIX, angle As Single)

D3DXMatrixRotationY(MOut As D3DMATRIX, angle As Single)

D3DXMatrixRotationZ(MOut As D3DMATRIX, angle As Single)

D3DXMatrixScaling(MOut As D3DMATRIX, x As Single, y As Single, z As Single)

D3DXMatrixTranslation(MOut As D3DMATRIX, x As Single, y As Single, z As Single)

Not too complicated really, you’ll see how to use them in a second, they all follow the
same format. MOut is the resulting matrix, and angle is always in radians (not
degrees).

D3DXMatrixIdentity matWorld

D3DXMatrixIdentity matTemp
D3DXMatrixRotationX matTemp, Angle * RAD
D3DXMatrixMultiply matWorld, matWorld, matTemp

D3DXMatrixIdentity matTemp
D3DXMatrixRotationY matTemp, Angle * RAD
D3DXMatrixMultiply matWorld, matWorld, matTemp

D3DXMatrixIdentity matTemp
D3DXMatrixRotationZ matTemp, Angle * RAD
D3DXMatrixMultiply matWorld, matWorld, matTemp

Angle = Angle + 1

D3DDevice.SetTransform D3DTS_WORLD, matWorld

The above excerpt is the code used in the sample program to spin the cube around
on all axis by 1 degree every frame. This code is updated every frame – so any
particularly complicated formula’s that you want to use may well slow things down a
bit – although using the D3DX* functions are fast enough not to worry about.

 38

If you now run the sample project (or your code if copying from the page) you
should be greeted with a fairly large, colourful spinning cube… If you have turbo-
charged hardware acceleration the cube may be spinning extremely fast (1 degree
every frame, 360+ fps will mean it does a complete spin in 1 second!), if this is the
case change the angle increment value down to 0.5 or 0.25…

 39

Vertex Buffers and Index Buffers.
Well, that was one rather large 7 A4 page section done with, things should fly by a
little quicker now that the basic theory has been covered. As with most things, once
you’ve jumped over the initial couple of hurdles (setting up D3D, basic 3D geometry)
it’s all easy – well, sort of ☺

This section is dealing with enhancing your capabilities for rendering geometry,
making things easier and faster. Which I’m sure you’ll appreciate…

The first stop will be vertex buffers – what are these? I hear you asking… A vertex
buffer is an area of memory where you can store your vertex data, this has the
advantage of being easier to render – both for you and for the driver (it can perform
various optimisations, and access the data faster) and allowing you to archive certain
pieces of geometry, a generic cube for example… Whilst not entirely true it can also
stop most accidental overwriting/corrupting errors – once the buffer is created it’s
not something you can accidentally change without realising it – whereas an array of
vertex structures as a standard variable could easily be overwritten by a rogue
function or library (however unlikely you think it, it will happen sometime).

Creating a vertex buffer is extremely simple once you have the basics from the last
section under your belt. At the simplest level it involves copying the data you
generated to a custom buffer…

The first part is allocating some space for our buffer:

‘In Declarations section
Dim vbCube As Direct3DVertexBuffer8

‘at the end of InitialiseGeometry() sub
Set vbCube = D3DDevice.CreateVertexBuffer(Len(CubeVerts(0)) * 36, 0, FVF_LVERTEX, D3DPOOL_MANAGED)
If vbCube Is Nothing Then Debug.Print "ERROR: Could not create vertex buffer": Exit Sub

Not too complicated really, first we create the buffer with the function built into the
Direct3DDevice8 class, then we check to make sure it was created successfully – if it
wasn’t it usually generates an error on that line. The parameters for the
CreateVertexBuffer() function look like:

CreateVertexBuffer(_
 LengthInBytes As Long, _
 Usage As Long, _
 FVF As Long, _
 Pool As CONST_D3DPOOL) As Direct3DVertexBuffer8

LengthInBytes : This is the amount of memory that will be set aside for your
buffer, it must be at least as big as the data you want to store in it – any less and
you’ll get an error when copying the data in, any more and you’ll be wasting space.
This value can be computed using the Len() function to find the size of one vertex
structure, then multiplying it by the number of structures that your using.
Usage : This can be left as 0 for most uses, but more specialised cases require that
you let Direct3D know that your going to be doing different things with this vertex

 40

buffer. For example, specifying D3DUSAGE_DYNAMIC will tell Direct3D to let the
driver know that we’re probably going to be changing the contents around quite a lot
– it will then choose the most optimal place in memory to put it. If you don’t specify
this, the buffer will be considered static – and the driver will place it in the most
optimal memory location for that use – which will mean that any lock-write-unlock
operations are slower (it assumed that you weren’t likely to be doing any).
FVF : This lets Direct3D know what sort of vertices you will be storing here, should
you ask D3D to perform any operations on this buffer later on it will base them on
this flag. Set this to be the same as the one you use for rendering.
Pool : This allows you to tell D3D where you would like the vertex buffer to be
stored, note that it’s where you would LIKE it to be – The driver may well override
this setting – should it be impractical (lack of space/lack for support for example).
The 3 options are: D3DPOOL_DEFAULT – it’s left mostly up to the driver to choose
where it goes – usually in video memory, but other places if the usages flags suggest
otherwise. D3DPOOL_MANAGED – D3D will store a master copy in system memory
and will copy the buffer to video memory as and when its required.
D3DPOOL_SYSTEMMEM – the buffer will be stored in system memory, which isn’t
usually accessable by the 3D device, and it will tend to be quite slow.

Now that we’ve created our vertex buffer we want to put some stuff in it! For this
example we’ll copy our cube vertices into the buffer and then render it from there.
For this we use a little helper function to copy the data:

D3DVertexBuffer8SetData vbCube, 0, Len(CubeVerts(0)) * 36, 0, CubeVerts(0)

That call will fill the specified vertex buffer with the specified amount of information
from the array provided. A quick run through of the parameters and what they mean
then:

D3DVertexBuffer8SetData(_
 VBuffer As Direct3DVertexBuffer8, _
 Offset As Long, _
 Size As Long, _
 Flags As Long, _
 Data As Any) As Long

Vbuffer : obviously this is the vertex buffer object that you want the data put into.
Offset : The offset in bytes from the beginning of the buffer that we start placing
new data – useful if your only wanting to change vertices 10-19 (for example).
Size : The amount of data that’s going to be copied in, also the amount that D3D
expects to find in the data array. This is the same calculation as used in creating the
buffer. Try to make sure beforehand that this doesn’t exceed the data source size, or
the remaining/total space in the vertex buffer
Flags : A set of flags defining how you want the data to be replaced/copied – look
up CONST_D3DLOCKFLAGS in the object browser for more details.
Data : This is the source array, it can be of any data type – whilst you could trick
D3D into storing any type of data it’s supposed to be vertex data only (make sure
you don’t accidentally include any state variables/non-vertex variables).

 41

Okay, you now have all the information required to create a vertex buffer – but
currently you cant actually do anything with it. For this sample all we’ll do is render it
– there are a few other things you can do, but I’ll let you explore those yourself…

‘replace:
D3DDevice.DrawPrimitiveUP D3DPT_TRIANGLELIST, 12, CubeVerts(0), Len(CubeVerts(0))

‘With:
D3DDevice.SetStreamSource 0, vbCube, Len(CubeVerts(0))
D3DDevice.DrawPrimitive D3DPT_TRIANGLELIST, 0, 12

As you can see, rendering gets considerably easier when using vertex buffers – tell it
where the vertex buffer is, and then what part you want rendering. As a side note,
the stream number (The first parameter in SetStreamSource) should be left as 0 in
most cases – things such as vertex shaders manipulate these further.

Now that you have vertex buffers under your belt we can take a look at index
buffers, these require vertex buffers (not technically true, but I’ll explain later),
which is why they came last. In fact, this is the last section in this article – we are
definitely homeward bound…

If you look at our cube geometry you’ll notice that it’s extremely inefficient – we use
36 vertices to describe an object that (in real life) only has 8 vertices. Wouldn’t it be
extremely useful if we could only place 1 vertex in each corner, rather than have 3-6
vertices sharing the same coordinate, whilst not always the case, in our example
they have the same colour as well – several vertices that are all identical.

This is where indices and index buffers come into play – they allow us to use vertices
more than once (to put it simply). We can create 8 vertices, and then, using an index
list say that triangle 1 uses vertices 1,2 and 3 and triangle 2 uses vertices 2,4 and 3
– reusing vertices. This has the advantage of being relatively fast, and also saves on
the amount of data involved – the index list will always be smaller than the vertex
list, and therefore the amount of data that’s processed and copied also decreases.

Unfortunately they aren’t quite the miracle invention I’m making them out to be –
two topics that we haven’t yet discussed: Lighting and textures can become
significantly worse/harder when using indices – it’s not always the case, but in cases
such as the cube example it would be very annoying. The exact reasoning will be
discussed in the relevant sections later on…

To set up and use indices/index buffers we first need to create a vertex buffer with
the key vertices in it – the following code does this for the cube sample:

 42

‘In the declarations section:
Dim vbCubeIdx As Direct3DVertexBuffer8
Dim ibCube As Direct3DIndexBuffer8
Dim vList(0 To 7) As LITVERTEX 'the 8 vertices required
Dim iList(0 To 35) As Integer 'the 36 indices required (note that the number is the same as the vertex count in the
previous version).

‘in the create geometry section:
vList(0) = CreateLitVertex(-1, -1, -1, &HFFFFFF, 0, 0, 0)
vList(1) = CreateLitVertex(-1, -1, 1, &HFF0000, 0, 0, 0)
vList(2) = CreateLitVertex(-1, 1, -1, &HFF00, 0, 0, 0)
vList(3) = CreateLitVertex(-1, 1, 1, &HFF, 0, 0, 0)
vList(4) = CreateLitVertex(1, -1, -1, &HFF00FF, 0, 0, 0)
vList(5) = CreateLitVertex(1, -1, 1, &HFFFF00, 0, 0, 0)
vList(6) = CreateLitVertex(1, 1, -1, &HFFFF, 0, 0, 0)
vList(7) = CreateLitVertex(1, 1, 1, &HFF8000, 0, 0, 0)

Set vbCubeIdx = D3DDevice.CreateVertexBuffer(Len(vList(0)) * 8, 0, FVF_LVERTEX, D3DPOOL_MANAGED)
If vbCubeIdx Is Nothing Then Debug.Print "ERROR: Could not create vbCubeIdx": Exit Sub

D3DVertexBuffer8SetData vbCubeIdx, 0, Len(vList(0)) * 8, 0, vList(0)

I’m not going to cover this part again – reread the previous section if you’re still
unclear as to setting up a vertex buffer.

The next part is the new part, we must set up an index list. All this requires is that
we fill an array of 16 bit integers (you can use 32 bit integers if you need to) and
then copy them to the new array. We’ll be rendering our cube using a triangle list
again – so we’re going to need to describe 12 triangles again, because of this we can
pretty much copy exactly what we did for the original triangle. This is what it’s going
to look like:

'top
iList(0) = 2: iList(1) = 6: iList(2) = 3
iList(3) = 6: iList(4) = 7: iList(5) = 3

'bottom
iList(6) = 0: iList(7) = 4: iList(8) = 1
iList(9) = 4: iList(10) = 5: iList(11) = 1

'left
iList(12) = 2: iList(13) = 3: iList(14) = 0
iList(15) = 3: iList(16) = 1: iList(17) = 0

'right
iList(18) = 6: iList(19) = 7: iList(20) = 4
iList(21) = 7: iList(22) = 5: iList(23) = 4

'front
iList(24) = 3: iList(25) = 7: iList(26) = 1
iList(27) = 7: iList(28) = 5: iList(29) = 1

'back
iList(30) = 2: iList(31) = 6: iList(32) = 0
iList(33) = 6: iList(34) = 4: iList(35) = 0

 43

I’ve grouped them together into their triangles – each line is a triangle, and there are
two triangles to each face – so two lines under each comment/heading.
Hopefully it’s all fairly explanatory; if we take the first triangle as an example, it uses
the vertices 2,6 and 3 to be rendered, these are in the standard clockwise order.

The next part we need to cover is creating an index buffer, and then copying the
data into it. Luckily this is almost identical to the creation of a vertex buffer – many
of the parameters are the same. To copy our index list into an index buffer we use
this piece of code:

Set ibCube = D3DDevice.CreateIndexBuffer(Len(iList(0)) * 36, 0, D3DFMT_INDEX16, D3DPOOL_MANAGED)
If ibCube Is Nothing Then Debug.Print "ERROR: Could not create the index buffer": Exit Sub

D3DIndexBuffer8SetData ibCube, 0, Len(iList(0)) * 36, 0, iList(0)

Straight away you can see the similarities; the only major different when creating
the index buffer is that we need to specify what format the indices are going to be in.
There are only two valid options here (despite it listing 30-40 formats):
D3DFMT_INDEX16 and D3DFMT_INDEX32, these refer to the actual data type that
we use to store our indices, a 16 bit integer (The integer data type) can only hold up
to 32,767 indices (the maximum + value for an integer), and a 32 bit integer (the
long data type) can only hold up to 2,147,483,647 (the maximum + value for a
long). Obviously using 32 bit indices take up double the amount of space (4 bytes
per value, rather than 2 bytes per value in 16 bit), so unless you are using an
extremely large number of indices you should try and stick to using 16 bit indices.

Now that we have our index data stored in a buffer we need to be able to do
something with it, for this example all we’re going to do is render it – there is very
little else you can do with them anyway. The following code segment will render our
cube using our vertex buffer/index buffer combo:

D3DDevice.SetStreamSource 0, vbCubeIdx, Len(vList(0))
D3DDevice.SetIndices ibCube, 0
D3DDevice.DrawIndexedPrimitive D3DPT_TRIANGLELIST, 0, 36, 0, 12

All it involves is setting the current index buffer and vertex buffer – make sure they
match up though, then using DrawIndexedPrimative() to render from them. The
parameters are fairly straight forward for the rendering call, you can use the third
and fourth to set a range that you want rendering (12-24 for example), you can use
the second parameter to make an offset in the vertex buffer (all values in the index
list get this number added to them, if it were 10, and iList(3) was 12 the actual
vertex used would be 22). The last value states how many primitive we’re rendering
– in this case the whole cube, 12 triangles.

There are two final things to be covered about the usage of indices and buffers; the
first one is about rendering without using the buffers. It is perfectly possible to
render our indexed cube without storing the index/vertex data in a buffer, but it is
often a great deal slower. The call for doing this is quite a lengthy one – you need to
specify the details of both the vertex and index buffers:

 44

D3DDevice.DrawIndexedPrimitiveUP D3DPT_TRIANGLELIST, 0, 8, 12, iList(0), D3DFMT_INDEX16, vList(0), Len(vList(0))

A very quick summary of what goes where:

PrimitiveType : What type of primitives we’re rendering
MinVertexIndex : The Starting vertex to render from
NumVertexIndices : The number of vertices that we’re going to render.
PrimitiveCount : The number of triangles that we are rendering
IndexDataArray : The first element in the array storing indices
IndexDataFormat : What format the index data is in, 16 or 32 bit
VertexStreamZeroDataArray : The first element of the vertex data array
VertexStreamZeroStride : The size of one vertex element

If you have the SDK help file you may realise that the 2nd and 3rd parameters have
different names – This is a typing error in the help file, the parameters I’ve listed
above come straight from the data-tip that appears when you type the line into VB.

Rendering Summary
Over the course of this article we have covered a total of 4 different ways of
rendering our cube:

'##RENDERING METHOD 1##
D3DDevice.DrawPrimitiveUP D3DPT_TRIANGLELIST, 12, CubeVerts(0), Len(CubeVerts(0))

'##RENDERING METHOD 2##
D3DDevice.SetStreamSource 0, vbCube, Len(CubeVerts(0))
D3DDevice.DrawPrimitive D3DPT_TRIANGLELIST, 0, 12

'##RENDERING METHOD 3##
D3DDevice.SetStreamSource 0, vbCubeIdx, Len(vList(0))
D3DDevice.SetIndices ibCube, 0
D3DDevice.DrawIndexedPrimitive D3DPT_TRIANGLELIST, 0, 36, 0, 12

'##RENDERING METHOD 4##
D3DDevice.DrawIndexedPrimitiveUP D3DPT_TRIANGLELIST, 0, 8, 12, iList(0), D3DFMT_INDEX16, vList(0), Len(vList(0))

With these 4 methods, and the knowledge of how to set them up you will be
perfectly capable of generating most forms of geometry in the best possible way.
Experiment with different complexity models to see what advantages of space/speed
you can find…

Finally, absolutely finally, I want to explain how to get data from the buffers after
you have put it there. Whilst it is quite likely you’ll have the original vertex structures
around to manipulate there will be times when you need to access the vertex or
index data and change it. It is through this method that you can do key frame
animation (I have a tutorial on my site about this – see the link in the summary).
Also when using indexed rendering you need only change the vertex in the vertex
buffer for it to be instantly reflected in the final rendering – all indices that point to
that vertex will use the updated copy.

 45

D3DIndexBuffer8GetData(_
 IBuffer As Direct3DIndexBuffer8, _
 Offset As Long, _
 Size As Long, _
 Flags As Long, _
 Data As Any) As Long

D3DVertexBuffer8GetData(_
 VBuffer As Direct3DVertexBuffer8, _
 Offset As Long, _
 Size As Long, _
 Flags As Long, _
 Data As Any) As Long

As you can see both functions are almost identical – the only difference being their
name and the first parameter. A quick run through of the common parameters then:

Offset : offset in bytes indicating where the data should be read from
Size : The size of the destination buffer in bytes
Flags : Not relevant in 99% of cases, examine CONST_D3DLOCKFLAGS if you think
you need something special
Data : This is the first element in an array that is going to store the data – it must
be in the correct format, and must be the correct size.

Should there be any problem with knowing how big the vertex/index buffer is – or
how many vertices/indices are stored inside then you can use the .GetDesc member
of either the vertex buffer or index buffer. This will retrieve either a
D3DVERTEXBUFFER_DESC or a D3DINDEXBUFFER_DESC structure, you can then use
the data provided to work out the size, in the case of index buffers the following code
will tell you how many indices there are in the buffer:

'D3DFMT_INDEX16 = 101
'D3DFMT_INDEX32 = 102
Dim ibDesc As D3DINDEXBUFFER_DESC
Dim IndexCount As Long 'how many indices are in the buffer

ibCube.GetDesc ibDesc
If ibDesc.Format = 101 Then
 '16 bit indices
 IndexCount = ibDesc.Size / 2
ElseIf ibDesc.Format = 102 Then
 '32 bit indices
 IndexCount = ibDesc.Size / 4
Else
 'no idea whats stored here!
End If

Debug.Print IndexCount, " indices in the buffer."

 46

And this code will tell you how many vertices there are in a vertex buffer:

Dim vbDesc As D3DVERTEXBUFFER_DESC
Dim DummyVertex As LITVERTEX
Dim VertexCount As Long
Dim TotalDivider As Long 'the size of the vertex structure

vbCube.GetDesc vbDesc

If vbDesc.FVF = FVF_LVERTEX Then
 'The type stored is the LVertex type
 VertexCount = vbDesc.Size / Len(DummyVertex)
Else
 'it's some other type of vertex, lets find out:
 If Not (vbDesc.FVF And D3DFVF_XYZ) = 0 Then
 Debug.Print "D3DFVF_XYZ"
 TotalDivider = TotalDivider + 12
 End If

 If Not (vbDesc.FVF And D3DFVF_XYZRHW) = 0 Then
 Debug.Print "D3DFVF_XYZRHW"
 TotalDivider = TotalDivider + 16
 End If

 If Not (vbDesc.FVF And D3DFVF_NORMAL) = 0 Then
 Debug.Print "D3DFVF_NORMAL"
 TotalDivider = TotalDivider + 12
 End If

 If Not (vbDesc.FVF And D3DFVF_DIFFUSE) = 0 Then
 Debug.Print "D3DFVF_DIFFUSE"
 TotalDivider = TotalDivider + 4
 End If

 If Not (vbDesc.FVF And D3DFVF_SPECULAR) = 0 Then
 Debug.Print "D3DFVF_SPECULAR"
 TotalDivider = TotalDivider + 4
 End If

 If Not (vbDesc.FVF And D3DFVF_TEX1) = 0 Then
 Debug.Print "D3DFVF_TEX1"
 TotalDivider = TotalDivider + 8
 End If

 If Not (vbDesc.FVF And D3DFVF_TEX2) = 0 Then
 Debug.Print "D3DFVF_TEX2"
 TotalDivider = TotalDivider + 8
 End If

 VertexCount = vbDesc.Size / TotalDivider
End If

Debug.Print VertexCount, " Vertices in the buffer"

Quite lengthy you’ll see, but that’s just if the format is unknown, in which case we
undo the “or-ing” to generate an FVF by “And-ing” it with the relevant components –
the ones listed above will detect most common types, but if you start using more
dynamic flags then you’ll need to add them to this list.

 47

SUMMARY
Well, I’ve finally completed this article! All 20 A4 pages of it and nearly 10,000 words
of it, it even took me almost dead on 7 hours to write the whole thing… and I haven’t
made a penny/dollar from it ☺ Maybe I should write a book about this stuff…

Once you have this massive amount of information safely behind you then you
should be perfectly capable of getting started with your own game, the next article
will tidy up all the loose ends and introduce you to loading models and direct3D
lighting, by which point you’ll be a fairly competent DirectXGraphics developer.

Please feel free to send any comments, criticms and questions to me:
Jack.Hoxley@DirectX4VB.com , I always like hearing from people who’ve read my
work…
Also, you can visit my main page – where a lot of this information can be found in
different formats/examples, along with plenty of other articles (over 100 in total), go
along to www.DirectX4VB.com and have a look around…

Till next time…

 48

mailto:Jack.Hoxley@DirectX4VB.com
http://www.vbexplorer.com/directx4vb/

 Welcome back for part 3 in my 3 part series on DirectXGraphics… First off, I’m
sorry for the rather long delay between parts 2 and 3 (8 months or so!), I’ve just
been phenomenally busy lately. Hopefully to make up for this gap I’ll cover
everything you need to know to give you a strong foundation in Direct3D8
programming. Direct3D9 / DirectX9 is about to enter it’s first beta-testing stage, so
it may seem that DX8/D3D8 is getting a little old (it’s a 1 year old API now), but you
would be foolish to think like that. From what I’ve seen here-and-there about D3D9
it seems to be not much more than an extension of D3D8, whereas v7 to v8 was a
big jump, v8 to v9 is more of a revision. Also, D3D9 wont be much use for a long
time yet as there will be very little hardware to support its new features, and very
few end-users owning this hardware. Direct3D8’s revolutionary pixel/vertex shader
technology only exists on 2 or 3 cards (GeForce 3 / 4 and the ATI Radeon’s) and isn’t
really being that extensively used yet, so if we haven’t even caught up with that
properly, why do we need Direct3D9…?

 I’ll stop moaning now, and get on with what this article is actually supposed
to be about. Part 2 was quite a complicated and fast paced article, and don’t expect
any let-off just yet – I’m going to be keeping up the pace for this article too. This is
the outline:
1) Using textures in Direct3D
2) Loading 3D Models from files
3) Using the Direct3D lighting engine
Doesn’t look like much does it? Haha, more fool you if that’s what your thinking.
These 3 topics alone deserve an article (or two) each… less talk, more learning!

 49

Using Textures in Direct3D

So far we’ve seen some basic 3D geometry – a spinning cube, you should be aware
that the colour of the vertices depicts what colours you actually see when it’s finally
rendered. Yet you should also be aware that you cant really do more than create
pretty-coloured gradients with it. Say we want to turn our 3D Box into something
more interesting – say a wooden crate for example.

I don’t think I need to tell you that it’s almost impossible to create a decent wooden
box appearance using just vertices and their colours. So we’re going to use a bitmap
to display the colours. As you should be aware, 3D geometry is made up of triangles,
and a simple fact of a triangle defined in 3 dimensions is that it is planar – a 2D
surface that doesn’t have curves or anything like that. Thus it is perfectly suited for
projecting a 2D bitmap image onto. This is the basis of texturing - we use a 2D
bitmap applied to the 3D triangles in order to make the overall model appear to look
more detailed / look like something.

The first step to using textures is to load the texture from the hard-drive / CD-ROM
into texture memory. This causes one slight complication already – texture memory
is a finite resource, yet art-work tends to happily consume an infinite amount of
space! Therefore we can only fit a potentially small amount of art work into memory
at any one time. This amount is indicated by the amount of memory the graphics
card has “onboard”. 32mb is common these days, with 16mb being a past favourite
and 64mb being standard on all the new high-tech boards. It is quite easy to work
out how much space you are using – based on the internal texture format and the
dimensions of the texture itself, also dependent on any additional space required for
mip-mapping.

I discussed the CONST_D3DFORMAT enumeration in the previous article – what the
letters mean, what the numbers are for… if you cant remember that then go read the
previous article. As you are aware, a bitmap is made up of a 2D grid of pixels, we
need to use the CONST_D3DFORMAT enumeration to tell Direct3D how to store the
colour for each of those pixels – 32 bit, 16 bit… As you should be aware, 32 bit = 4
bytes, 16 bits = 2 bytes. If we store a standard 256x256 bitmap with 32 bits per
pixel we’ll need 256kb of texture memory, however, if we store it at 16 bits per pixel
we’ll only need 128kb of texture memory. This may seem fairly trivial for only one
texture – and it is; but if you have 200 textures it’s the difference between 50mb
and 25mb – suddenly it means a lot more! 25mb will fit into most recent video cards,
50mb will only fit into the (current) top of the range 3D cards. The bottom line being
that you must be clever with your choice of texture format. As a general note, you
will tend to find that your game runs much faster if the display mode format and the
texture formats are the same – as it saves any last minute format conversions from
being done (which is just a tiny bit more work to be done).

This following little piece of code will allow you to check what texture formats can be
used by the currently installed 3D board. The last parameter (D3DFMT_X8R8G8B8 in
this case) indicates the texture format you want to test.

 50

If D3D.CheckDeviceFormat(D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL, _
 D3DWindow.BackBufferFormat, 0, D3DRTYPE_TEXTURE, _
 D3DFMT_X8R8G8B8) = D3D_OK Then

 Debug.Print "32 Bit textures with no alpha are supported"
End If

The other rule for textures is their size. Whilst it’s not so important with new 3D
cards, it is very important if you want to be backwards compatible. It’s also generally
much faster to stick to using the old style texture size conventions.
1. Stick to using 2n texture dimensions, that is 2,4,8,16,32,64,128,256 and so on…
anything above 256x256 is getting a little risky – the very popular Voodoo3 chipset
doesn’t support textures above 256x256 in size, which instantly causes a problem
with compatibility. 256x256 is also the optimal size for a texture and tends to give
the best all round performance.
2. Textures don’t have to be square. This may well cause some problems with very,
very old graphics, but we cant be compatible with everyone now…
3. Where possible, group small textures onto one larger texture, this is known as
texture-paging sometimes. For example 64 32x32 tile pictures will be okay as 64
different textures, but it’ll run much faster to store them all as one 256x256 texture.

This following piece of code retrieves the maximum texture sizes available to the
device:

D3D.GetDeviceCaps D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL, DevCaps
Debug.Print "MAX TEX SIZE: ", DevCaps.MaxTextureWidth & "x" & DevCaps.MaxTextureHeight

Enough talking now, lets load a texture into memory. Textures are stored in a
Direct3DTexture8 object, and can be loaded using one of two main functions
(provided by the D3DX8 library):

CreateTextureFromFile(_
 Device As Direct3DDevice8, _
 SrcFile As String) As Direct3DTexture8

CreateTextureFromFileEx(_
 Device As Direct3DDevice8, _
 SrcFile As String, _
 Width As Long, _
 Height As Long, _
 MipLevels As Long, _
 Usage As Long, _
 Format As CONST_D3DFORMAT, _
 Pool As CONST_D3DPOOL, _
 Filter As Long, _
 MipFilter As Long, _
 ColorKey As Long, _
 SrcInfo As Any _
 Palette As Any) As Direct3DTexture8

 51

As you can see, the first function is much simpler than the second. This is deliberate
– sometimes you really don’t need that much control over the texture creation
process. However, I strongly suggest that you get used to using the second function
from square 1. Many of the parameters are fairly simple and don’t change much
between different uses. The following code is the fairly general implentation:

Set CubeTex = D3DX.CreateTextureFromFileEx(D3DDevice, _
 App.Path & "\cube_tex.jpg", _
 256, 256, 1, 0, _
 DispMode.Format, D3DPOOL_MANAGED, _
 D3DX_FILTER_LINEAR, D3DX_FILTER_LINEAR, _
 0, ByVal 0, ByVal 0)

Looks a little complicated doesn’t it. Well, the first parameter associates the texture
with our device (simple enough), the second parameter points to the file where the
data is stored (BMP, TGA, JPG allowed). The third and fourth textures indicate the
size of the texture in memory, if the file is of different dimensions then D3DX will
resize it for you. The fifth and sixth parameters indicate the mip-map levels and the
usage – leave these both to 0 in most cases, although in this case I’ve set the
MipLevels parameter to be 1 – I only want one iteration in the mipmap sequence… if
I let it do more (setting it to 0 indicates a full chain) then it’ll start chewing up my
memory! The seventh parameter indicates the format of the texture, as I said
earlier, keeping it the same as the device format is best – so that’s what I’ve done.
The eighth parameter indicates the memory pool – managed (copied to video
memory when needed/moved back to system memory when not needed), default
(lets the driver decide where it should go) and system memory (stores it in system
memory, which isn’t accessible to the 3D Device, yet can be used for some other
functions). The ninth parameter and tenth parameters indicate how D3DX filters the
input data to fit the memory data - should the two sizes be different;
D3DX_FILTER_LINEAR will do fine here unless you’re resizing the image by more
than 2x or 3x the original. The eleventh parameter is the colorkey and isn’t being
used here – but will be explained later. The last two parameters aren’t really that
interesting and have been known to cause errors on some systems – so leave them
as ByVal 0 unless you really need to.

 52

The previous code will now have loaded the following image into texture memory:

Cube_Tex.Jpg

it’s not an amazingly interesting texture, but it’ll look alright on our box. The next
thing that I need to discuss is texture coordinates.

Texture coordinates are a fun topic, well actually, they’re not – because you either
get it or you don’t; if you don’t then you’re screwed! I’m only going to go over it
briefly here – hopefully you will follow, otherwise, ask some people in the forums on
this site, or go in search of some other more in-depth texturing tutorials. The
following diagram is required for reference:

The above diagram can be imagined as the Cube_Tex.jpg shown above. You should
be familiar with coordinates in a normal 2D image – X and Y, measured in pixels. We
now replace this coordinate system with a scalar system – all pixels are referred to
on a 0.0 to 1.0 scale; this is unaffected by the actual pixel dimensions – 256x256 or
128x256, it doesn’t matter – they both still use the 0.0 to 1.0 scale. This makes
things surprisingly easier actually. Both for us, and for the 3D accelerator. It means

 53

that we can interchangeably use different sized textures (a low-res version and high-
res version) with the same piece of code, and expect to get an almost identical
result. It also makes it much easier to algorithmically generate texture coordinates
(a bit more advanced).

In the above diagram the four corners are labelled with their respective coordinates.
I’ve also drawn a simple triangle on the diagram marked with three vertices, A B and
C. At a guess, I’m thinking that A will have coordinates of [0.4,0.3], B will be
[0.6,0.1] and C will be [0.75,0.3] – it’s only a rough guess, and you could calculate it
exactly if you wanted… but I didn’t! If this new coordinate system really confuses
you still you can use a simple conversion formula: (1/Width)*X, (1/Height)*Y, where
width, height, x and y are all pixel measurements. On a final note, texture
coordinates are usually denoted using U,V and W rather than X,Y and Z – however
U=X, V=Y, W=Z. It is advised to stick to convention so that other people understand
what you’re doing.

Now that we’ve covered loading textures and their coordinate system we can actually
try rendering something with it! I’m going to use the cube from the second part of
this series – the one with no indices and no vertex/index buffers. There is a good
reason for this – I want each vertex to have it’s own, different, texture coordinate.
This gets difficult when using indices, as in the case of the cube, 3 sides share each
vertex, between 3 and 6 triangles as well; therefore I’d need to express up to 6
texture coordinates as a single coordinate – not easy, or in this case, just not
possible. Therefore I’m going to have to use the lots-of-vertices cube.

The first step is to assign texture coordinates to each of the vertices, I’ve only copied
out the code for the first face, because it’s identical for the other 5, and only takes
up lots of space:

CubeVerts(0) = CreateLitVertex(-1, 1, -1, Corner010, 0, 0, 0)
CubeVerts(1) = CreateLitVertex(1, 1, -1, Corner110, 0, 1, 0)
CubeVerts(2) = CreateLitVertex(-1, 1, 1, Corner011, 0, 0, 1)

CubeVerts(3) = CreateLitVertex(1, 1, -1, Corner110, 0, 1, 0)
CubeVerts(4) = CreateLitVertex(1, 1, 1, Corner111, 0, 1, 1)
CubeVerts(5) = CreateLitVertex(-1, 1, 1, Corner011, 0, 0, 1)

‘The parameters in bold are the two texture coordinates.

The second step is to actually render the cube with the texture applied – which is
actually very very easy.

 54

The final result looks like this:

Hmm, so what’s gone wrong here then? It’s red and yellow? Not much like the
picture of the texture above… well, actually, nothing has gone wrong – you’ve just
seen the effects of Direct3D lighting. As you may remember, the original cube
geometry had 8 different colours for the corners, well it’s these colours that are
blending with the texel data to form the final rendered image. This can be used to
create brilliant effects – as we shall see later on in the lighting section. If we replace
the vertex colours with white then the original texture wont be affected at all – and
you’ll get an image like this next one:

Which probably looks much more like what you expected.

Okay, so that’s texturing covered. Well, as much as you need for a foundation. There
is literally tonnes and tonnes more to learn about texturing – but leave it alone till
you have this part sorted out in your head. The main areas of advanced texturing
come under these headings:
Alpha channel effects – opacity/transparency effects in textures.
Altering pixel data - generating procedural textures, or applying per-pixel effects.
Compression – by default the D3DFMT_DXT* formats.

 55

The Texture cascade – where you can apply up to 8 textures to each triangle –
capable of creating some stunning effects (bump mapping, specular lighting to name
two).
Pixel shaders – very, very advanced texture effects – brand new to Direct3D8, and
quite likely to become a big part of Direct3D 9 and 10…

To get you started on tutorials for some of those features I have the following links:
http://www.ancientcode.f2s.net - has a good article on binary manipulation, and it’s
uses in altering pixel data.
http://www.DirectX4VB.com/Tutorials/DirectX8/GR_Lesson12.asp - a tutorial on the
texture cascade and the effects it presents.
http://www.DirectX4VB.com/Tutorials/DirectX8/GR_Lesson14.asp - a tutorial on
accessing and manipulating texture memory.
http://www.DirectX4VB.com/Tutorials/DirectX8/GR_Dot3Bump.asp - a tutorial on
using the texture cascade to do Dot-3 bump mapping.

 56

http://www.ancientcode.f2s.net/
http://www.directx4vb.com/Tutorials/DirectX8/GR_Lesson12.asp
http://www.directx4vb.com/Tutorials/DirectX8/GR_Lesson14.asp
http://www.directx4vb.com/Tutorials/DirectX8/GR_Dot3Bump.asp

Loading 3D Models into Direct3D

As we’ve seen so far, you have to manually (or algorithmically) create all the
geometry you use. This is absolutely fine for things like cubes, spheres, triangles
etc… but how about trying to create a model of a person – in particular an animated
character? I know you people aren’t stupid – and you wouldn’t try to manually type
in all the vertices… ☺ The other important factor is the data-driven architecture – A
very powerful and popular game programming system. If all your geometry is stored
in files, then you need only alter those files for it to be globally changed across the
whole game – rather than sifting through all your code, making the changes then
recompiling…

So what exactly makes up a model? In general it’s just a collection of vertices,
indices, textures and materials that when rendered appear as a complete model.
They are often referred to as objects or meshes. In general, it’s a self contained
instance that will, to a certain degree, manage itself.

This is where 3D modelling packages such as maya, milkshape 3d, 3DS Max,
Truespace, lightwave etc… come into play. One of more of these programs will
become your best friend when it comes to creating 3D geometry, purely because
they’re designed to do it, and are exceptionally good at doing it. Learning a 3D
modelling package properly can be as hard, or harder than the actual programming –
I strongly recommend getting and reading a good book on your 3D modeller (unless
you’re already competent of course).

Our task for this section is to take a model created in one of these programs and
load it into our Direct3D program for real-time viewing. This is actually a surprisingly
easy task. I happen to use 3D Studio Max to do my modelling, and it’s native format
is the .3DS format – which is convenient as Microsoft built in a converter for the
.3DS format to .X format. The .X format is Microsoft’s native DirectX file format –
and is therefore built into the D3DX API quite nicely. This is all great IF you’re using
the correct tools, if you aren’t then you’ll need to write your own data parsing
function to convert the data in the file into D3D acceptable triangle/vertex data.

To demonstrate using models in direct3d I made a more complicated version of the
original cube model. Using 3D Studio Max this was a fairly trivial process of extruding
backwards certain parts of each face – such that I was left with a raised border
around each face. I then used Max’s powerful texturing tools to make the raised
borders use the grey part of the texture, and the inner panel to use the purple/blue
part of the texture. The final results looked like this:

 57

The 3D effect of the borders isn’t too apparent from this static shot; but when you
see it rotating in real-time you can notice them quite easily. This next shot shows the
geometry in wireframe mode:

This final shot looks quite complicated, because you can see all 6 faces of the cube at
once – and as each one has quite a bit of geometry it does look like a mess of lines!
However, you can still clearly see that this version is considerably more complicated
than the original hard-coded cube model.

Now, onto the code. Luckily for you, the code is really quite simple for both loading,
and rendering of models. If you have to write your own loading function then it could

 58

get a little more complicated – depending upon how you code it. We need 4 global
declarations before we can get started loading models:

Dim nMaterials As Long
Dim MeshMaterials() As D3DMATERIAL8
Dim MeshTextures() As Direct3DTexture8
Dim CubeMesh As D3DXMesh

All models are sub-divided into sections – take a car model for example, you may
have a section for 4 wheels, another for the windows, and another for the main
body. These sections are usually separated by different materials or textures. This
explains the first declaration, nMaterials, which keeps track of how many sections we
have, and will also be used later to redefine the next two arrays of materials and
textures. The final declaration, CubeMesh, is a class type built into the D3DX runtime
library; it will handle the storage/rendering of the model geometry; in essence it just
manages a couple of vertex buffers and index buffers. This next little bit of code will
load a model from the hard drive / CD-ROM…

Set CubeMesh = D3DX.LoadMeshFromX(App.Path & "\cube_3d.x", D3DXMESH_MANAGED, _
 D3DDevice, Nothing, mtrlBuffer, nMaterials)

If CubeMesh Is Nothing Then GoTo BailOut: '//Dont continue if the above call did not work

ReDim MeshMaterials(nMaterials) As D3DMATERIAL8
ReDim MeshTextures(nMaterials) As Direct3DTexture8

For i = 0 To nMaterials - 1

 '//Get D3DX to copy the data that we loaded from the file into our structure
 D3DX.BufferGetMaterial mtrlBuffer, i, MeshMaterials(i)

 '//Fill in the missing gaps - the Ambient properties
 MeshMaterials(i).Ambient = MeshMaterials(i).diffuse

 '//get the name of the texture used for this part of the mesh
 TextureFile = D3DX.BufferGetTextureName(mtrlBuffer, i)

 '//Now create the texture
 If TextureFile <> "" Then 'Dont try to create a texture from an empty string
 Set MeshTextures(i) = D3DX.CreateTextureFromFileEx(D3DDevice, App.Path & "\" & TextureFile, _

256, 256, D3DX_DEFAULT, 0, _
D3DFMT_UNKNOWN, D3DPOOL_MANAGED, _
D3DX_FILTER_LINEAR, D3DX_FILTER_LINEAR, _
0, ByVal 0, ByVal 0)

 End If

Next I

Debug.Print "Number of Faces in mesh: " & CubeMesh.GetNumFaces
Debug.Print "Number of Vertices in mesh: " & CubeMesh.GetNumVertices
Debug.Print "Number of segments in mesh: " & nMaterials

Not hugely complicated really. The last bit isn’t really necessary – it just provides
some interesting statistics for you. As far as vertex and face count goes, it isn’t wise
to trust your 3D-renderer when it comes to vertex/face counts, whilst those
programs are 100% correct for the geometry in their program, the various

 59

converters, and this loading function sometimes messes things up and adds more
vertices.

Also note, that the LoadMeshFromX() function gets extremely slow when dealing
with medium-large geometry files. Because all the processing is done away from
your application you cant easily output a status bar showing the progress of loading
it. This is one reason why people often write their own object formats – Ones I have
written in the past have loaded a 2000 vertex model in <250ms, whereas with D3DX
it’s taken 3 seconds or more… This is also partly due to the .X file format
specification including lots and lots of other rubbish that you may not actually be
interested in – frame hierarchies, animation information; in general it’s a very
flexible format, but you can get a considerably smaller file, and considerably faster
loading times should you design a custom format that is specific to exactly what you
want.

The final part for dealing with models is to render them. Luckily for us, this is also
very, very simple. These following lines should be placed within a
BeginScene()…EndScene() block:

For i = 0 To nMaterials - 1
 D3DDevice.SetTexture 0, MeshTextures(i)
 D3DDevice.SetMaterial MeshMaterials(i)
 CubeMesh.DrawSubset i
Next I

Basically, all we’re doing is looping through all the sections with different materials,
committing those materials and textures to the device, then rendering the relevant
geometry.

Several of the more popular file formats – mdl, md2, md3, 3ds etc… are covered on
www.wotsit.org - a great site for all file specifications!

 60

http://www.wotsit.org/

Using Direct3D Lighting

Okay, onto our final section for this article. Lighting in general is a very important
topic to understand, and unfortunately, it is quite complicated as well.

It is often a good idea to look at cinema for lighting – cinema has been around for
about a century now, and has progressed into a fine art form, and one of the many
things that makes or breaks a scene in a film is the lighting, yet the key aspect is
that you don’t necessarily notice it. Ambient lighting is a very subtle effect that will
often set the atmosphere for a film – how many horror films have the scary scenes in
broad daylight/with the lights on (well, I know there are a few!). Shadows and the
type of lighting (strobe, direct, soft, bright, dark) are also huge factors. In my
opinion, computer gaming is only just starting to catch up with true artistic lighting,
In the last year or so many of the level-architecture articles on websites have
specifically brought lighting up as a major topic – whereas before it was just “put the
light where it looks best”… Games such as Max-Payne are the first to put the best
lighting algorithms (ray tracing/radiosity) to great use, and I expect many future
games to follow this pattern.

Don’t get your hopes up straight away though – the Direct3D lighting engine, whilst
complicated, is still very, very simple. The first point to notice is that it wont
generate shadows, secondly, it doesn’t handle reflection or refraction, thirdly, it’s
only an approximation – accurate only at each vertex. The more complicated
solutions require the use of light maps, and other pre-calculated methods (which are
too complicated to go into here). I read somewhere that many of the Max-Payne
maps required several hours of pre-processing just for the lighting algorithm, so you
can appreciate why it’s not done in real-time ☺

For now, we’ll be happy with the Direct3D lighting engine, once you have mastered
this then you can begin to consider other models.

You have actually already seen the effects of the lighting engine in all 3 parts of this
series. Whenever we specified a colour for a vertex, and got the gradient of colours
across a triangle we were actually seeing D3D lighting at work. To save on
processing times, Direct3D will linearly interpolate across a triangle the colours from
its 3 vertices – it assumes that the light won’t change considerably between them.
This, to a certain degree, won’t matter for small triangles, but for larger triangles this
causes a big problem – if none of the vertices fall within the lights range then it wont
be lit, even if a large area of the triangle is actually within the lights range.

In order to proceed with lighting you must use a little maths, the proof behind these
equations isn’t really too important, all you need to know is how to use the equations
to get the results you want. As I’ve already stated, Direct3D performs its calculations
on a per-vertex basis, thus we must include some extra information with every
vertex – a normal vector. This vector indicates what direction the vertex is facing,
which may seem a little strange – but it makes perfect sense really: A triangle facing
away from the light should get no light, whereas a triangle facing the light directly
should get lots of light, and how do we tell if the triangle is facing the light or not?
Use the normal…

 61

Typically the normal will represent the direction the triangle is facing, however, it
doesn’t have to! Whilst it often looks a little strange, you can do strange things to
the normal and get some very odd effects – not very good for realistic scenes, but
fine for more humorous scenes. You also have to take much more care over indices
when using D3D lighting – if two (or more) triangles share the same vertex, what
direction is it facing? One way of doing this is to generate a normal for each triangle,
then average them out to give a final direction for the shared vertex. This method
usually works a treat, but there are times when it generates results that look wrong
for all the triangles concerned…

If we have a triangle defined by the three vertices v0,v1,v2 then the normal is going
to be found using the following function:

Private Function GetNormal(v0 As D3DVECTOR, v1 As D3DVECTOR, v2 As D3DVECTOR) As D3DVECTOR
 '//0. Any Variables
 Dim v01 As D3DVECTOR, v02 As D3DVECTOR, vNorm As D3DVECTOR

 '//1. Get the vectors 0->1 and 0->2
 D3DXVec3Subtract v01, v1, v0
 D3DXVec3Subtract v02, v2, v0

 '//2. Get the cross product
 D3DXVec3Cross vNorm, v01, v02

 '//3. Normalize this vector
 D3DXVec3Normalize vNorm, vNorm

 '//4. Return the value:
 GetNormal = vNorm
End Function

That’s fairly harmless really – the D3DX helper library handles all the complicated
maths for us – the cross product, subtraction and normalizing. However, if you want
to avoid using the D3DX functions then the function will look like this instead:

 62

Private Function GetNormal2(v0 As D3DVECTOR, v1 As D3DVECTOR, v2 As D3DVECTOR) As D3DVECTOR
 '//0. Any Variables
 Dim L As Double
 Dim v01 As D3DVECTOR, v02 As D3DVECTOR, vNorm As D3DVECTOR

 '//1. Get the vectors 0->1 and 0->2
 v01.X = v1.X - v0.X
 v01.Y = v1.Y - v0.Y
 v01.Z = v1.Z - v0.Z

 v02.X = v2.X - v0.X
 v02.Y = v2.Y - v0.Y
 v02.Z = v2.Z - v0.Z

 '//2. Get the cross product
 vNorm.X = (v01.Y * v02.Z) - (v01.Z * v02.Y)
 vNorm.X = (v01.Z * v02.X) - (v01.X * v02.Z)
 vNorm.X = (v01.X * v02.Y) - (v01.Y * v02.X)

 '//3. Normalize this vector
 L = Sqr((vNorm.X * vNorm.X) + (vNorm.Y * vNorm.Y) + (vNorm.Z * vNorm.Z))
 vNorm.X = vNorm.X / L
 vNorm.Y = vNorm.Y / L
 vNorm.Z = vNorm.Z / L

 '//4. Return the value:
 GetNormal = vNorm
End Function

The above is for reference, should you write an editor that isn’t linked to the DX8
runtime library, or should you want to try and optimise parts…

One important factor that I haven’t mentioned yet, is that the vertices, v0,v1,v2
need to be in a clockwise order – you should be aware of this, due to the implications
of culling by the D3D renderer, but for the maths above, if the triangle vertices were
in an anti-clockwise order then the resulting normal would point in the opposite
direction – which, in most cases would mean that your vertices don’t get lit…

Now that I’ve covered generating normals, we need to know what to do with them.
The following excerpt is the vertex FVF declaration, and the vertex type:

Const FVF_VERTEX = (D3DFVF_XYZ Or _
 D3DFVF_NORMAL Or _
 D3DFVF_TEX1)

Private Type VERTEX
 P As D3DVECTOR
 N As D3DVECTOR
 T As D3DVECTOR2
End Type

The ‘P’ member is the vertex’s position, the ‘N’ member is the vertex normal and the
‘T’ member is the texture coordinate.

 63

To demonstrate D3D lighting I’m going to use the two methods already
demonstrated in this article – texturing and model loading… simply because it allows
me to show you the effects easily.

There are 4 types of light provided for you by Direct3D – point, spot, direction and
ambient lights. The first 3 require that you set up a special D3DLIGHT8 object that
describes the light, the fourth requires that you set a render state. The following list
covers the 4 types of light, in order of processing speed:

Ambient Lights
Ambient lights have no source, no direction and no range – they affect every vertex
rendered. The basic result is that no vertices are rendered darker than the currently
specified ambient colour – setting it to a dark grey will result in everything being
visible a small amount. We set the ambient light value using the following code:

D3DDevice.SetRenderState D3DRS_AMBIENT, D3DColorXRGB(100, 100, 100)

Directional Lights
Directional lights are good for general shading of a scene, such that everything is
evenly lit up, but you also get a dark side to every object. They can be used very
effectively as a sun object.

Directional lights have direction and colour only, no range, no position and no
attenuation (see Point lights for more details). A completed Directional light structure
looks like this:

Dim lghtDirectional As D3DLIGHT8

lghtDirectional.Type = D3DLIGHT_DIRECTIONAL
lghtDirectional.Direction = MakeVector(0, -1, 0)
lghtDirectional.position = MakeVector(1, 1, 1) 'shouldn't be left as 0
lghtDirectional.Range = 1 'shouldn't be left as 0
lghtDirectional.diffuse = CreateD3DColorVal(1, 0, 1, 0) 'green light

Point Lights
Point lights have a position and a range, but no direction – they emit light in all
directions. A simple real world analogy would be a light-bulb. To set up a point-light
you need to fill out a D3DLIGHT8 structure:

Dim lghtPoint As D3DLIGHT8

lghtPoint.Type = D3DLIGHT_POINT
lghtPoint.diffuse = CreateD3DColorVal(1, 1, 0, 0)
lghtPoint.position = MakeVector(0, 0, -10)
lghtPoint.Range = 25#
lghtPoint.Attenuation0 = 0#
lghtPoint.Attenuation1 = 1#
lghtPoint.Attenuation2 = 0#

 64

The attenuation values are quite important to understand. As we all know, light from
a given source decreases the further from the light source that we are – the light
attenuates. The three value that D3D allow us to use control how the light
attenuates – constant, linear and quadratic (0 through 2 respectively). You should
never let all three = 0 at the same time, otherwise you’ll get internal divide-by-0
errors. Experiment with different values to see what happens, a value of 1 in
Attenuation0 will remove any attenuation, whilst negative values in the other two will
cause the light to get brighter the further away from the light source it gets ☺

For those mathematicians amongst us, the general attenuation formula is:

A = 1 / (Attenuation0 + D*Attenuation1 + D2*Attenuation2)

Where D is the distance from the light source to the current vertex. As you can see,
the denominator is a standard quadratic equation in the form of aX2 + bX + c.

The other point to note is that when specifying colours they are on a 0.0 to 1.0 scale,
rather than the standard 0-255 scale. This is because you can specify negative
values, and values >1, allowing extra bright lights, and “dark” lights that remove
colour rather than add it.

Spot Lights
Finally, we get onto spot lights. These are the slowest type of lighting available, but
in some cases look by far the best (A tunnel with several spot lights shining down
from the ceiling for example). Hopefully you can visualise in your head a spot-light,
and how they interact with the world – a cone of light projected from one point in
one direction, brightest in the middle, getting darker towards the edge… It is the fact
that it is based on a cone that it requires more calculation time – we need to work
out IF it’s in the cone, and how close to the “centre” of the cone (for brightness). A
completed D3DLIGHT8 object for a spot-light will look like this:

Dim lghtSpot As D3DLIGHT8

lghtSpot.Type = D3DLIGHT_SPOT
lghtSpot.Range = 50#
lghtSpot.diffuse = CreateD3DColorVal(1, 0, 0, 1)
lghtSpot.Direction = MakeVector(0, 0, 1)
lghtSpot.position = MakeVector(0, 0, -10)
lghtSpot.Theta = 0.25 * PI
lghtSpot.Phi = 0.5 * PI
lghtSpot.Attenuation0 = 0.1
lghtSpot.Attenuation1 = 1#
lghtSpot.Attenuation2 = 0#

As you can see, a spotlight has range, direction, position and colour. It also has two
new values – phi and theta. These two values indicate the angle (in radians) of the
spot-lights cone. Theta is the inner cone, Phi is the outer cone. Phi must be a
positive value between 0 and π (180o) and Theta must also be a positive value
between 0 and Phi. If you think about this, it makes perfect sense… An outer angle
greater than 180o makes little sense really (it would start shining behind itself), and
an inner angle greater than the outer angle doesn’t make much sense either.

 65

Remember that these values MUST be set in radians – if you use degrees, all sorts of
funky things will start happening! If you really cant get your head around radians
then you can multiply a value in degrees by (π/180) where π is the mathematical
constant 3.14159…(can be calculated by typing “4*atn(1)” in the immediate window
in VB).

Now that we’ve learnt how to configure a D3DLIGHT8 object for all 3 main types of
light, we’re going to need to let the device know about them. You can register as
many light objects as you want with D3D, BUT you can only have a certain number
enabled (on) at any one time. You can detect how many lights may be turned on at
any one time by using the D3DCAPS8.MaxActiveLights value. If you enable more
lights than are supported the call tends to fail, or if it does succeed then it wont
actually process the light when doing the calculations… This value tends to be 8 – 16
on the GeForce cards, for most older cards it’ll return –1, which indicates that an
unlimited number of lights can be “on” at any one time; However, the more lights
you enable the slower your program will run.

D3DDevice.SetLight 0, lghtPoint
D3DDevice.SetLight 1, lghtDirectional
D3DDevice.SetLight 2, lghtSpot

D3DDevice.LightEnable 0, 1
D3DDevice.LightEnable 1, 1
D3DDevice.LightEnable 2, 1

D3DDevice.SetRenderState D3DRS_LIGHTING, 1

Not too complicated really, the last function, LightEnable, takes the index and a
simple 1/0 value for on/off respectively. Any geometry processed after the
“D3DDevice.LightEnable x, 1” line will be lit by that light (given that the geometry is
within the influence of that light). It is perfectly acceptable to turn a light on for only
one model – such that only it gets lit by that light.

To show off the lighting we’ll need a new model to play with. The cube mesh I
made/showed earlier isn’t complex enough to show off the new lighting code; instead
I’m going to use a much higher vertex-density mesh. This will mean that it runs
considerably slower on most machines, but this is only a demo…

First off: A solid, unlit version of the geometry

 66

Second: A wireframe version, to show you the complexity of the geometry (3384
vertices)

Third: The (red) Point light which is located directly below the camera in this shot,
notice the distribution of the lighting.

Fourth: The (Green) Directional Light. Notice that the lighting is evenly distributed,
and that the entire “bottom” is unlit. Also notice, that if shadows were cast, the
bottom of the cone would not be highlighted in green.

 67

Fifth: The (Blue) Spotlight, notice a very distinct spot – indicating the presence of a
cone.

Lastly: A nasty mess of all the colours – where the red and blue lights colour the
same section we get magenta, in other parts we have a yellow colour.

One thing that is quite clearly visible on the last two is that the lighting on the very
tip of the cone isn’t lit in the same way that the rest of the cone/model is. This is
done deliberately here to show off how textures can affect the final colour. Take the
colour red (as on the nose), it can be represented as RGB(255,0,0). If we then use a
lighting colour of RGB(0,1,0) we’ll get various shades of green, and only green,
interpolated across the triangle. This is important – if there was no texture applied,
there would ONLY be green pixels. To get the final pixel colour we MULTIPLY the
interpolated lighting colour with the texel colour: RGB(RtRl, GtGl, BtBl) where Xt =
texture and Xl = lighting. If we go back to the original example of a red texel colour,
RGB(255,0,0), and a green light, RGB(0,1,0) that multiplied colour works out as
RGB(255*0, 0*0, 0*1) = RGB(0,0,0) = Black! Which is what you can see in the
above screenshots. The bottom line is this: If the texture doesn’t contain any (or
very little) of the channel that the light uses, then the resulting pixel will be black.
This is easily solved by using ambient lighting; but can also be a useful tool for
lighting effects.

 68

CONCLUSION

Okay, so this 3 part series is now complete. I really, really hope that you liked it –
either way, drop me an email at Jack.Hoxley@DirectX4VB.com , constructive
comments are always welcome. From the emails I’ve received recently this series
has been very successful… ☺

As for DirectX programming – you should now have enough knowledge to write a
very simple game / engine. Don’t be a fool and try a “simple Quake clone”, it’s not
going to happen. However, a nice 3D pong/breakout clone, or a simple maze/puzzle
game would make for a good learning project. There is absolutely tonnes and tonnes
of stuff left to learn! I have been working with DirectX for 2-3 years now (version
5,6,7,8) and I don’t think I’ve ever learnt everything in every release of the API –
close, but not quite!

As a final note, this may be the last in this series, but I do have a website that will
continue to be updated – where you can find more in depth tutorials on the content
covered in this series, more advanced tutorials, and generally newer content. Check
it out here: http://www.DirectX4VB.com …

Many thanks for getting this far with my series.
Jack Hoxley

 69

mailto:Jack.Hoxley@DirectX4VB.com
http://www.directx4vb.com/

Web Links

http://www.microsoft.com/DirectX/

- the main end-user site
http://msdn.microsoft.com/directx/

- the developer’s site, where you can download the full DirectX SDK’s. This is
going to be of most use to you.

http://developer.nvidia.com/
- nVidia (3D card giant) has their own developer website here. Definitely
worth a look around, even if you don’t have an nVidia based card.

http://www.ati.com/developer/
- ATI (another 3D card giant) also have a developer-related section to their
site. Another good place to look.

http://www.mwgames.com/voodoovb/
- One of the best VB gaming websites around, particularly good for it’s active
forums (you’ll often find me hanging around here)

http://www.rookscape.com/vbgaming/
- Lucky’s VB Gaming Site, another one of the huge VB gaming websites, also
with a very active community forum

http://www.DirectX4VB.com
 - My site!! How could I leave this one out of the list??

Recommended Reading

This following list is just for your reference if you’re interested in buying some “real”
books on the subject. They all come from my book reviews section –
www.DirectX4VB.com/reviews.asp ; I strongly suggest you have a look at this page
before buying the book…

Game Architecture And Design – Rollings And Morris
 - Coriolis Technology Press, 1-57610-425-7
 - A great book on the theory behind game design and development

Microsoft Visual Basic Game Programming With DirectX – Harbour
 - Premier Press Inc, 1-931841-25-X
 - One of the only good books on DirectX in the VB language (most are in C++)

Special Effects Game Programming With DirectX – McCuskey
 - Premier Press Inc, 1-931841-06-3
 - A more advanced text that you could use to go the next-step from this article.

 70

http://www.microsoft.com/DirectX/
http://msdn.microsoft.com/directx/
http://developer.nvidia.com/
http://www.ati.com/developer/
http://www.mwgames.com/voodoovb/
http://www.rookscape.com/vbgaming/
http://www.directx4vb.com/
http://www.directx4vb.com/reviews.asp

 71

DISCLAIMER AND COPYRIGHT

The tutorial text and source code are provided as-is, I have done everything
reasonable to ensure that details are accurate and the source code works as stated,
but given the nature of the topic I cannot guarantee it will work on every computer. I
am often happy to help solve any problems you may have (email me!), but bare in
mind that I do live a busy and hectic life and may not have a huge amount of spare
time.

©2002 Jack Hoxley – All Rights Reserved

I am happy for you to redistribute this pdf document on any website, ftp location, CD
as long as it remains unmodified. The same holds for the source code included in the
archive. I would also appreciate it if you let me know when/where you redistribute
this file.

	�
	Introduction

	Part 221
	Part 349
	
	
	
	�

	A simple application
	
	
	
	�

	Using Textures in Direct3D
	Loading 3D Models into Direct3D
	Using Direct3D Lighting

